Download presentation
Presentation is loading. Please wait.
Published byHelen Riley Modified over 9 years ago
1
6.2 What Are Special Parallelograms? Pg. 9 Properties of Rhombi, Rectangles, and Squares
2
6.2 – What Are Special Parallelograms?___ Properties of Rhombi, Rectangles, and Squares In the previous lesson, you learned that parallelograms have both pairs of opposite sides parallel. You also discovered many different properties of parallelograms. Today you are going to continue your investigation with parallelograms with even more special properties.
3
6.8–PARALLELOGRAMS WITH RIGHT ANGLES a. Rectangles are special parallelograms. Since they are parallelograms, what do you already know about rectangles?
4
Both _____________ sides are___________ oppositeparallel Both _____________ sides are ________________ opposite congruent
5
Both _____________ angles are ________________ opposite congruent Both _____________ angles are ________________ consecutive supplementary
6
The diagonals ________________ each other bisect
7
b. Mark wanted to learn more about this shape. He noticed that the diagonals seem to have a special relationship beyond just being bisected. He decided to investigate. He drew a rectangle twice, adding one diagonal. Find the length of AC and BD. Show all work. What do you notice?
8
8 2 + 15 2 = x 2 289 = x 2 17 = x
9
8 2 + 15 2 = x 2 289 = x 2 17 = x Diagonals are congruent
10
c. List the two special properties Rectangles have that general Parallelograms don’t have. 4 right angles Diagonals are congruent
11
6.9–PARALLELOGRAMS WITH EQUAL SIDES a. A rhombus is another type of special parallelogram. Since they are parallelograms, what do you already know about rhombuses?
12
Both _____________ sides are ________________ opposite parallel Both _____________ sides are ________________ opposite congruent
13
Both _____________ angles are ________________ opposite congruent Both _____________ angles are ________________ consecutive supplementary x y xy
14
The diagonals ________________ each other bisect
15
c. Audrey wanted to learn more about her shape. She noticed that the diagonals seem to have a special relationship as well. She measured the sides of the rhombus and all were 5 units long. Then she measured AC = 6 units and BD = 8 units. Mark these lengths on the picture below. Is there a way to tell if ∆AEB is a right triangle? Explain.
16
5 5 5 5 3 3 4 4 5 2 = 3 2 + 4 2 25 = 9 + 16 25 = 25 The diagonals are perpendicular
17
d. Audrey noticed something else with the angle in the rhombus. Using the given lines symmetry, mark any angles congruent. What do you notice?
19
Diagonals bisect the angles
20
c. List the two special properties Rhombuses have that general Parallelograms don’t have. 4 congruent sides Diagonals are perpendicular Diagonals bisect angles
21
6.10 – PARALLELOGRAMS WITH EQUAL SIDES AND RIGHT ANGLES Ms. Matthews has a favorite quadrilateral. It is a rhombus combined with a rectangle. a. What is the name of Ms. Matthews' shape? Draw a picture to support your answer. square
22
b. This shape has more properties than any other quadrilateral. Why do you think this is? It is a parallelogram, a rectangle, and a rhombus
23
6.11 – SPECIAL PARALLELOGRAMS Name the type of parallelogram. Explain how you know using only the markings.
24
parallelogram rectangle
25
rhombus
26
rectangle rhombus
27
square rhombus
28
6.12 – MISSING PARTS Find the missing information based on the type of shape and its special properties.
29
a. The diagonals of rhombus PQRS intersect at T. Find the indicated measure. _____ _________ RP = _________ SP = _________ RS = _________ 15 30° 90° 60° 12 15
30
b. The diagonals of rectangle WXYZ intersect at P. Given that XZ = 12, find the indicated measure. _________ _________ _________ WP = _________ 40° 50° 80° 6
31
c. The diagonals of square DEFG intersect at H. Given that EH = 5, find the indicated measure. HF = 90° 45° 5
32
6.13 – AREA Find the area of the rhombus by finding the area of each triangle and then adding.
33
22 25 275 A = 1100 ft 2
34
3 4 2 = x 2 + 3 2 16 = x 2 + 9 7 = x 2
35
4 4 4 8 8 8 8 A = 32 m 2
36
6 3 3
37
Parallelogram Rectangle Rhombus Square Trapezoid Isosceles Trapezoid Kite Triangle
38
Rectangle
39
All the properties of a parallelogram 4 right angles Diagonals are congruent
41
Rhombus
42
All the properties of a parallelogram Diagonals are perpendicular Diagonals bisect angles
43
Add area of each triangle
44
Square
45
All the properties listed above
46
or
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.