Download presentation
Presentation is loading. Please wait.
Published byRosalind Stewart Modified over 9 years ago
1
Optimistic Concurrency Control for Distributed Learning Xinghao Pan Joseph E. Gonzalez Stefanie Jegelka Tamara Broderick Michael I. Jordan
2
Data Model Parameters Machine Learning Algorithm
3
Data Model Parameters Distributed Machine Learning
4
Data Model Parameters ! ! Distributed Machine Learning Concurrency: more machines = less time Correctness: serial equivalence
5
Data Model Parameters Coordination-free
6
Data Model Parameters Mutual Exclusion
7
Data Model Parameters Mutual Exclusion
8
Correctness Concurrency Coordination- free Mutual exclusion High LowHigh Low Optimistic Concurrency Control ?
9
Data Model Parameters Optimistic Concurrency Control Optimistic updates Validation : detect conflict Resolution : fix conflict ! ! Hsiang-Tsung Kung and John T Robinson. On optimistic methods for concurrency control. ACM Transactions on Database Systems (TODS), 6(2):213–226, 1981. Concurrency Correctness
10
Optimistic Concurrency Control Application: Clustering Natural domain for parallelization K-means – popular algorithm Fixed number of clusters – not fit for Big Data Big Data solution: DP-means + OCC
11
Example
12
Example: K-means Bad!
13
Example: DP-means Correct clusters Sequential! Brian Kulis and Michael I. Jordan. Revisiting k-means: New algorithms via Bayesian nonparametrics. In Proceedings of 23rd International Conference on Machine Learning, 2012.
14
OCC DP-means Validation Resolution
15
Evaluation: Amazon EC2 OCC DP-means Runtime Projected Linear Scaling 2x #machines ≈ ½x runtime ~140 million data points; 1, 2, 4, 8 machines
16
Optimistic Concurrency Control High concurrency: Conflicts rare Validation easy Resolution cheap OCCified Algorithms Online facility location BP-means: feature modeling Ongoing Stochastic gradient descent Collapsed Gibbs sampling
17
What can OCC do for you? See us @ poster session! xinghao@eecs.berkeley.edu Optimistic Concurrency Control Big Learning @ NIPS 2013 http://biglearn.org Xinghao Pan, Joseph E. Gonzalez, Stefanie Jegelka, Tamara Broderick, and Michael I. Jordan. Optimistic concurrency control for distributed unsupervised learning. ArXiv e-prints arXiv:1307.8049, 2013.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.