Download presentation
Presentation is loading. Please wait.
Published byClinton Sullivan Modified over 9 years ago
1
Dimension Reduction using Rademacher Series on Dual BCH Codes Nir Ailon Edo Liberty
2
Dimension Reduction Algorithmic technique: –often as “black box” Removes redundancy from data A sampling method Measure concentration phenomenon (Existential) metric embedding Recently: computational aspects –time –randomness
3
Challenge Find random projection from R d to R k (d big, k small) such that for every x R d, ||x|| 2 =1, 0< with probability exp{-k || x|| 2 = 1 ± O( RdRd RkRk x xx
4
Usage If you have n vectors x 1..x n R d : set k=O( log n) by union bound: for all i,j || x i - x j || ≈ ||x i - x j || low-distortion metric embedding “tight” RdRd RkRk x1x1 x1x1 x2x2 x3x3 x2x2 x3x3
5
Solution: Johnson-Lindenstrauss (JL) “dense random matrix” k d =
6
So what’s the problem? running time (kd) number of random bits (kd) can we do better?
7
Fast JL A, Chazelle 2006 = S parse. H adamard. D iagonal time = O(k 3 + dlog d), randomness=O(k 3 + d) beats JL (kd) bound for: log d < k < d 1/3 k d Fourier
8
This Talk O(d logk) for k < d 1/2 beats JL up to k < d 1/2 O(d) random bits
9
Algorithm (k=d 1/2 ) A, Liberty 2007 = B CH. D iagonal..... k d Error Correcting Code
10
Error Correcting Codes k = d 1/2 d B = columns closed under addition row set subset of d x d Hadamard 0 k -1/2 1 -k -1/2 Bx computable in time d logd given x binary “dual-BCH code of designed distance 4” 4-wise independence
11
Error Correcting Codes Fact (easily from properties of dual BCH): ||B t || 2 4 = O(1) for y t R k with ||y|| 2 = 1: ||yB|| 4 = O(1) RdRd R k= d B x xx D...
12
Rademacher Series on Error Correcting Codes look at r.v. BDx (R k, l 2 ) BDx = D ii x i B i D ii R { 1}i=1...d = D ii M i RdRd R k= d B x xx D...
13
Talagrand’s Concentration Bound for Rademacher Series Z = || D ii M i || p (in our case p=2) Pr[ |Z- E Z| > ] = O(exp{- 2 /4||M|| 2 p 2 })
14
Rademacher Series on Error Correcting Codes look at r.v. BDx (R k, l 2 ) Z = ||BDx|| 2 = || D ii M i || 2 ||M|| 2 2 ||x|| 4 ||B t || 2 4 (Cauchy-Schwartz) by ECC properties: ||M|| 2 2 ||x|| 4 O(1) trivial: E Z = ||x|| 2 = 1 RdRd R k= d B x xx D...
15
Rademacher Series on Error Correcting Codes look at r.v. BDx (R k, l 2 ) Z = ||BDx|| 2 = || D ii M i || 2 ||M|| 2 2 =O(||x|| 4 ) E Z = 1 Pr[ |Z- E Z| > ] = O(exp{- 2 /4||M|| 2 2 2 }) Pr[|Z-1| > ] = O(exp{- 2 /||x|| 4 2 }) RdRd R k= d B x xx D... how to get ||x|| 4 2 = O(k -1 = d -1/2 ) ? Challenge: w. prob. exp{-k deviation of more than
16
Controlling ||x|| 4 2 RdRd R k= d B x xx D... how to get ||x|| 4 2 = O(k -1 = d -1/2 ) ? if you think about it for a second... “random” x has ||x|| 4 2 =O(d -1/2 ) but “random” x easy to reduce: just output first k dimensions are we asking for too much? no: truly random x has strong bound on ||x|| p for all p>2
17
Controlling ||x|| 4 2 RdRd R k= d B x xx D... how to get ||x|| 4 2 = O(k -1 = d -1/2 ) ? can multiply x by orthogonal matrix try matrix HD Z = ||HDx|| 4 = || D ii x i H i || 4 = || D ii M i || 4 by Talagrand: Pr[ |Z- E Z| > t ] = O(exp{-t 2 /4||M|| 2 4 2 }) E Z = O(d -1/4 ) (trivial) ||M|| 2 4 ||H|| 4/3 4 ||x|| 4 (Cauchy Schwartz) (HD used in [AC06] to control ||HDx|| )
18
Controlling ||x|| 4 2 how to get ||x|| 4 2 = O(k -1 = d -1/2 ) ? RdRd R k= d B x xx D... Z = || D ii M i || 4 M i = x i H i Pr[ |Z- E Z| > t ] = O(exp{-t 2 /4||M|| 2 4 2 }) (Talagrand) E Z = O(d -1/4 ) (trivial) ||M|| 2 4 ||H|| 4/3 4 ||x|| 4 (Cauchy Schwartz) ||H|| 4/3 4 d -1/4 (Hausdorff-Young) ||M|| 2 4 d -1/4 ||x|| 4 Pr[ ||HDx|| 4 > d -1/4 + t ] = exp{-t 2 /d -1/2 ||x|| 4 2 }
19
Controlling ||x|| 4 2 how to get ||x|| 4 2 = O(d -1/2 ) ? RdRd R k= d B x xx D... Pr[ ||HDx|| 4 > d -1/4 + t ] = exp{-t 2 /d -1/2 ||x|| 4 2 } need some slack k=d -1/2- max error probability for challenge: exp{-k} k = t 2 /d -1/2 ||x|| 4 2 t = k 1/2 d 1/4 ||x|| 4 = ||x|| 4 d - /2
20
Controlling ||x|| 4 2 how to get ||x|| 4 2 = O(d -1/2 ) ? RdRd R k= d B x xx D... first round: ||HDx|| 4 < d -1/4 + ||x|| 4 d - /2 second round: ||HD ’’ HD ’ x|| 4 < d -1/4 + d -1/4- /2 + ||x|| 4 d - r=O(1/ )’th round: ||HD (r)... HD ’ x|| 4 < O(r)d -1/4... with probability 1-O(exp{-k})
21
Algorithm for k=d -1/2- RdRd RkRk B x xx D... HD (1) HD (r) running time O(d logd) randomness O(d)
22
Open Problems Go beyond k=d 1/2 Conjecture: can do O(d log d) for k=d 1- Approximate linear l 2 - regression minimize ||Ax-b|| 2 given A,b (overdetermined) –State of the art for general inputs: Õ(linear time) for #{variables} < #{equations} 1/3 –Conjecture: can do Õ(linear time) always
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.