Download presentation
Presentation is loading. Please wait.
1
Multiples Waveform Inversion
Dongliang Zhang and Gerard Schuster King Abdullah University of Science and Technology 12/06/2013
2
Outline Motivation Theory Numerical Example Conclusions
Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
3
Outline Motivation Theory Numerical Example Conclusions
Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
4
Motivation Multiples : wider coverage, denser illumination multiples
primary Multiples : wider coverage, denser illumination FWI MWI
5
Recorded data (primary + multiples)
Motivation Multiples waveform inversion vs full waveform inversion Source wavefield Receiver wavefield FWI Impulsive wavelet Recorded data MWI Recorded data (P+M) Multiples (M) Recorded data (primary + multiples) Impulsive wavelet Recorded data multiples Natural source
6
Outline Motivation Theory Numerical Example Conclusions
Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
7
Theory Algorithm of MWI 1. Misfit function
2. Gradient of data residual Multiples RTM
8
Algorithm of MWI Forward propagation Back propagation
3. Update velocity/slowness
9
MWI Workflow Calculate multiples to get the multiples residual
Multiples RTM to get gradient of misfit function Update the velocity Number of iterations >N No Yes Stop
10
Generate Multiples Mr = (Pd+Md ) +Mr - (Pd+Md) Step 1 Pd+Md Mr Step 2
direct propagation Pd+Md Line source (P +M) heterogeneous Mr reflected propagation Step 2 direct propagation homogeneous Line source (P +M) Pd+Md heterogeneous homogeneous Step 3 Mr = (Pd+Md ) +Mr - (Pd+Md)
11
Example water homogeneous (Pd+Md)+Mr (Pd+Md) Mr (multiples)
Virtual Source (P+M) Example T (s) Z (km) 0 water homogeneous X (km) T (s) (Pd+Md)+Mr X (km) (Pd+Md) X (km) Mr (multiples)
12
Conventional migration
Gradient of MWI Multiples residual Recorded data Impulsive wavelet Data residual Multiples migration Conventional migration Yike Liu (2011)
13
Outline Motivation Theory Numerical Example Conclusions
Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
14
Numerical Example True Velocity Model Initial Velocity Model
km/s Z (km) Z (km) km/s Initial Velocity Model X (km)
15
Numerical Example Tomogram of FWI Tomogram of MWI 2 Z (km) 0
km/s Z (km) Tomogram of MWI Z (km) X (km) km/s
16
Numerical Example True True FWI FWI MWI MWI
17
Numerical Example RTM Image Using FWI Tomogram Z (km) X (km)
18
Numerical Example RTM Image Using MWI Tomogram Z (km) X (km)
19
Numerical Example Common Image Gather Using FWI Tomogram
20
Numerical Example Common Image Gather Using MWI Tomogram
21
Numerical Example FWI MWI FWI MWI
Data Residual Res (%) Convergence of MWI is faster than that of FWI FWI MWI Iterations Res (%) Model Residual FWI MWI MWI is more accurate than FWI
22
Numerical Example FWI Gradient for One Shot MWI Gradient for One Shot
X (km) MWI Gradient for One Shot
23
Outline Motivation Theory Numerical Example Conclusions
Multiples contain more information Theory Algorithm of MWI and generation of multiples Numerical Example Test Marmousi model Conclusions
24
Conclusions Source wavelet is not required Illuminations are denser
MWI converge faster than FWI in test on Marmousi model Tomogram of MWI is better than that of FWI in test on Marmousi model FWI MWI FWI MWI
25
Limitations: Dip angle
vs Future work: P+M FWI P+M MVA
26
Thank you!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.