Download presentation
Presentation is loading. Please wait.
Published byChristina Matthews Modified over 9 years ago
1
T violation search in K decays using stopped K + J. Imazato IPNS, KEK Workshop on Physics at an Upgraded Fermilab Proton Driver Workshop October 8, 2004 1. Transverse muon polarization in K + 2. KEK E246 experiment 3. Future experiments 4. J-PARC experiment
2
Transverse muon polarization in K + → 0 + K 3 decay form factors and T violation History of K 3 transverse polarization experiments K L → − + Bevatron 1967 Im = -0.02 ±0.08 K L → − + Argonne 1973 Im = -0.085 ±0.064 K L → − + BNL-AGS 1980 Im = 0.009 ±0.030 K + → 0 + BNL-AGS 1983 Im = -0.016 ±0.025 K + → 0 + KEK-E246 2004 Im = -0.0053 ±0.0071 ±0.0036 P T spurious ( Final State Interaction )= very small T-odd correlation
3
Features of K + P T ■ Small standard model contribution – Bigi and Sanda “CP violation” (2000) – P T ~ 10 -7 ■ Small FSI spurious effects –Single photon contribution Zhitnitskii (1980) P T < ~ 10 -6 –Two photon contribution Efrosinin et al. PL B493 (2000) 293 P T ~ 4 x 10 -6 ■ High sensitivity to CP violation beyond the SM – Mult- Higgs doublet model – Leptoquark model – Some Supersymmetric models P T ~ 10 - 4 -10 - 3 Three Higgs doublet model SM FSI (example)
4
Higgs doublet model L = (2√(2)G F ) 1/2 [ i U L KM D D R + i U R M U KD L + i N L M E E R ] H i + + h.c. flavor conservation Im = Im( 1 1 * ) × (m K / m H + ) 2 = Im( 1 1 * ) × ( v 2 /v 3 ) 2 × (m K / m H + ) 2 v i : vacuum expectation values i, i, i : mixing matrix elements Only schematic K P T v 2 /v 3 Im( 1 1 * ) Im( *) (v 2 /v 3 ) 2 / M H 2 = 4.1×Im GeV -2
5
3HDM : constraints from other experiments Neutron EDM (charged Higgs exchange) d n =C n Im( 1 1 *) < 0.63 x 10 -25 e cm ⇨ Im( 1 1 *) < ~10 b→s A = A SM + A 3HDM ( *) ⇨ Im( *) ≦ 3.2 (for m H ~2m Z ) [Grossman and Nir (1993), Kiers et al.(2000)] but stringent constraint b→X A = A SM + A 3HDM ( *) Im( i i *)=Im( *) (v 2 /v 3 ) 2 < 7400 (for m H ~2m Z ) [Grossman, Haber and Nir (1995)] c.f. P T : Im( *) (v 2 /v 3 ) 2 = 1.36 ×10 5 Im (for m H ~2m Z ) For v 2 /v 3 > ~ 10, P T is the most stringent constraint on 3HDM [Garisto and kane (1991)]
6
Other models Charged Higgs exchange Constraints on M H + =tan ( +A t cot )/m g~ × Im[V 33 H+* V 32 D L * V 31 U R ] slepton exchange + down-type squark exchange Constraints on M Im[ 2i2 ( ’ i12 ) * ] and Im[ ’ 21k ( ’ 22k ) * ] scalar leptoquark exchange Constraints on k 2 /M k 2
7
R- parity violating SUSY W = W MSSM + W RPV __ __ __ __ __ W RPV = ijk L i L j E k + ’ ijk L i Q j D k + ” Ijk U i D j D k L i, Q i : lepton and quark doublet superfield E i, D i, U i : electron, down- and up-quark singlet superfield Constraint from Im on Im[ 2i2 ( ’ i12 ) * ]/M 2 and Im[ ’ 21k ( ’ 22k ) * ]/M 2 Constraint on from Im E246) Im[ 2i2 ( ’ i12 ) * ] and Im[ ’ 21k ( ’ 22k ) * ] × @ M=100 GeV while constraint from other experiments : ≤ 4 × 10 -2 @ M=100 GeV
8
P T (K + → no SM contribution, but induced by pseudoscalar interactions complementary to P T (K→ [Kobayashi et al. (1996)] FSI is not large : O(10 -4 ) [Efrosinin and Kudenko (1999), Hiller and Isidori (1999)] Model K + 0 + K + + ■ Standard Model <10 -7 <10 -7 ■ Final State Interactions <10 -5 <10 -3 ■ Multi-Higgs 10 -2 10 -2 P T (K + 0 + ) 2 P T (K + 0 + ) ■ SUSY with sqarks mixing 10 -3 3x10 -3 ■ SUSY with R-parity breaking 4x10 -4 3x10 -4 ■ Leptoquarks 10 -2 5x10 -3 E246 : P T = -0.0064 ± 0.0185 (stat) ± 0.0010 (syst) Phys. Letters B561, 166 (2003) P T = -0.0067 ± 0.0143 (stat) ± 0.0014 (syst)
9
KEK E246 experiment Japan ● KEK ● Univ. of Tsukuba, ● Tokyo Institute of Technology ● Univ. of Tokyo ● Osaka Univ. Russia ● Institute for Nuclear Research Canada ● TRIUMF ● Univ. of British Columbia ● Univ. of Saskatchewan ● Univ. of Montreal Korea ● Yonsei Univ. ● Korea Univ. U.S.A. ● Virginia Polytech Institute ● Princeton Univ. Taiwan ● National Taiwan Univ.
10
E246 experimental setup using stopped K + End viewSide view [J.Macdonald et al.; NIM A506 (2003) 60] K + → 0 +
11
E246 muon polarimeter Cross section One-sector view y(cm) B
12
Double ratio measurement CsI barrel fwd and bwd 0 / P T directions fwd - bwd - Double ratio measurement 768 A fwd - A bwd A T = 2
13
E246 result and model implication P T = - 0.0017 ± 0.0023(stat) ± 0.0011(syst) ( |P T | < 0.0050 : 90% C.L. ) Im = - 0.0053 ± 0.0071(stat) ± 0.0036(syst) ( |Im | <0.016 : 90% C.L. ) [M.Abe et al., Phys. Rev. Letters 93 (2004) 131601] Three Higgs doublet model |Im | < 0.016 (90% C.L.) ⇒ Im( 1 1 * ) < 2176 (at m H =2m Z ) cf. BR (B→X ) ⇒ Im( 1 1 * ) < 7400 (at m H =2m Z ) [R.Garisto and G.Kane, Phys. Rev. D44 (1991)2789] v 2 / v 3 = m t /m d n ~ 4/3 d d ∝ Im( 1 1 * ) × m d / m H 2 |Im | < 0.016 (90% C.L.) ⇒ d n < 5 ×10 -27 e cm cf. d n exp < 6.3×10 -26 e cm KLKL K+K+
14
Systematic errors Source of Error 12fwd/bwd P T x 10 4 e + counter r-rotationxo0.5 e + counter z-rotationxo0.2 e + counter f-offsetxo2.8 e + counter r-offsetoo<0.1 e + counter z-offsetoo<0.1 + counter f-offsetxo<0.1 MWPC -offset (C4)xo2.0 CsI misalignmentoo1.6 B offset ( )xo3.0 B rotation ( x )xo0.4 B rotation ( z )xx5.3 K + stopping distributionoo<3.0 + multiple scatteringxx 7.1 Decay plane rotation ( r )xo1.2 Decay plane rotation ( z )xx0.7 K 2 DIF backgroundxo0.6 K + DIF backgroundox< 1.9 Analysis--3.8 Total11.4 12 : 12-fold rotational cancellation fwd/bwd : 0 forward/backward cancellation
15
Stopped K + vs. in-flight decay method stopped K + method in-flight-decay method Example E246 old BNL experiment K + beam momentum low p for stopping high p K + beam intensity low high Decay kinematics isotropic boosted forward 0 detection all directions only forward decay? Sensitive region to P T possible not always Kinematic resolution good poor Double ratio exp. possible difficult
16
+ polarization measurement for K 3 P T Method longitudinal field transverse field Configuration Observable Experiment E246 old BNL experiment Relative sensitivity 1 1/√2 Systematic error double ratio B field reverse reduction A T, -A T t+ T, - t+ T Matching with stopped K + good good Systematic error small ● error due to B reverse ● t 0 calibration necessary
17
Future T violation experiment and sensitivity limitations ■ Methodology : Stopped K + method rather than an in-flight decay experiment Double ratio measurement in the decay kinematic space Longitudinal field on the P T component ■ Desirable detector : Large K 3 acceptance Simultaneous K P T measurement Small instrumental systematic errors ■ Sensitivity goal : E246 : P T stat (E246) > P T syst (E246) Future experiment (FE) : P T syst (FE) ~ 1/10 P T syst (E246) ~ 10 -4 P T stat (FE) ~ P T syst (FE) ~ 10 -4 P T syst (FE) ~ 10 -4 might be feasible, but P T syst (FE) ~ 10 -5 will be vey difficult.
18
E246 upgrade at J-PARC ? E246 was statistically limited. ■ Polarimeter field by a new magnet Parallel holding field of P T Precise field distribution alignment reduction of the most serious systematic error ■ Active polarimeter 4 solid angle for decay positron Energy and angle of measurements of positrons FoM = √ = 3.8 x E246 ■ Upgrade of readout electronics Rate performance = 10 x E246 under the condition of K/ >>1 Merit Lower cost than a completely new setup Well known detector performance and systematics
19
Expectation for E246-upgrade Gain from E246 Polarimeter : 3.8 Beam intensity : √10 Run time : √0.66 Total = 9.8 Statistical error : P T = 3.0 x 10 -4 Systematic errors Total error P T syst ~ 10 -4
20
New detector proposal at J-PARC To go down below 10 -4, we need a new detector. ■ Experiment principle stopped kaons double ratio detector azimuthal symmetry complete reconstruction of kinematics ■ Detector concept larger + acceptance high resolution 0 measurement active polarimeter photon veto to measure K ■ Most important requirement suppression of systematic errors to the 10 -4 level
21
J-PARC proposal L-19 Large solenoid ■ Field parameters Strength : 1-3 kG Alignment+symmetry : 10 -4 100 over 1m Field measurement with a rotating coils Allowed stray field : 100 mG Use of the field for + and e + tracking K + --> : P T : P T ~10 -4 ■ Detector components Target calorimeter Pre-shower counter + tracker Polarimeter veto counters Large solenoid
22
Vector correlation At J-PARC Higher beam rate Different conditions for up- and down-stream side Double ratio between left -going 0 and right-going 0
23
Symmetrization of K + stopping distribution z ■ Adjustment of null asymmetry A 0 = ( A left + A right )/2 N(z K )=symmetric => A 0 = 0 N(z K )=asymmetric=> A 0 ≠0 ■ A T = ( A left - A right )/2 No effect in A T from asymmetric z- distribution due to left-right cancellation but unknown higher order systematics Artificial z- symmetrization by using tracker ===> A 0 = 0 0 - L/R scheme ==> e + - F/B asymmetry measurement
24
Effects of magnetic field on polarization Cancellation between + and - Null asymmetry check Cancellation between left and right Presence of B field has no influence on the validity of experiment Same situation as in the zero field case z=0
25
Active polarimeter ■ Measurement of Muon stopping position Positron emission direction Positron energy Electromagnetic shower ■ location ■ energy deposit ■ Analysis Michel spectrum ■ Problem of use of plastics formation of muonium muon spin depolarization B=3kG enough for decoupling? Better choice will be muon tubes made of Al k k a system with the highest sensitivity to polarization
26
Rejection of K 2 background + < 79 o < 39 o Optimization of K 2 background rejection by Opening angle cuts, and X-parameter cut on photon spectrum X= (E 1 -E 2 )/ (E 1 +E 2 ) K 2 was a significant background in E246..
27
Instrumental systematics Most dangerous systematics will be instrumental misalignments magnet calorimeter Cancellation by azimuthal integration spurious P T decay plane rotation
28
Sensitivity for K P T FoM = √ Run time 1 = 10 7 s Loi-19 estimate based on fwd/bwd scheme _ 10 -5
29
Estimate of K P T sensitivity 1. Photon energy 20 – 200 MeV 2. Muon energy 200 MeV 3. 120 O Acceptance per K + 0.7 x 10 -4 N( K + + ) 0.7 x 10 10 Statistical sensitivity : P T (1 ) 0.7 x 10 -4 (estimate based on F/B scheme)
30
Kaon beam K0.8 at T1 target In Phase 1 for stopped K +/- beam T2 target in Phase2 p= 650~800 MeV/c K/ > 1 with two DCS’s p/p < 3% K + intensity =10 6 ~ 10 7 /s low p kaon line
31
K + beam for stopped K + experiments K + stop = I p K + (E p ) C T(p K ) stop (p K ) I p : proton beam intensity K +(E p ) : K + production rate at E p ↑with E p C : channel acceptance T(p K ) : channel transmission↑with p K stop (p K ): stopping efficiency↓with p K K + / + ratio ↓with p K Optimum p K @ E p =12 GeV (E246) : 650 MeV/c with one DCS @ E p = 30-50 GeV (J-PARC) : 650~800 MeV/c longer channel with two DCS’s K + (E p ) : nearly constant with E p in the relevant E p region for p K = 650~800 MeV/c consideration on optimum beam momentum
32
Summary ■ Transverse muon polarization P T is a clean and very sensitive probe of new physics. ■ KEK-E246 has recently improved the limit of P T and Im . ■ Future experiments aiming for P T ~10 -4 will be important and desired. ■ The experiment at J-PARC using a stopped beam will be very promising: K + 0 + P T <10 -4 K + + P T ~ 10 -4
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.