Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Age of Euler. The Bernoullis Images from MacTutor Jakob I 1654-1705 Johann I 1667-1748 Nicholaus III 1695-1726 Daniel I 1700-1782 Johann II 1710-1795.

Similar presentations


Presentation on theme: "The Age of Euler. The Bernoullis Images from MacTutor Jakob I 1654-1705 Johann I 1667-1748 Nicholaus III 1695-1726 Daniel I 1700-1782 Johann II 1710-1795."— Presentation transcript:

1 The Age of Euler

2 The Bernoullis Images from MacTutor Jakob I 1654-1705 Johann I 1667-1748 Nicholaus III 1695-1726 Daniel I 1700-1782 Johann II 1710-1795 Nicholaus I 1662-1716 Nicholaus II 1662-1716 Nicholaus 1623-1708 Jakob II 1759-1789 Johann III 1746-1807 Daniel II 1751-1834 Christoph 1751-1834 Johann Gustave 1751-1834

3 Leonard Euler Images from MacTutor

4 Joseph Louis Lagrange Guillaume François l’Hôpital Maria Gaetana Agnesi Jean Le Rond d’Alembert Bishop George Berkeley Colin Maclaurin Thomas Simpson

5 Calculus Texts in the 1700’s England (fluxions) Charles Hayes – A Treatise of Fluxions Simpson – A New Treatise of Fluxions (1737) Maclaurin – A Treatise of Fluxions (1742) Continental Europe (differentials) l’Hôpital – Analysis of Infinitely Small Quantities… (1690) Maria Agnesi – Foundations of Analysis for the Use of Italian Youth (1748) Euler – Introduction to Analysis of the Infinite (1748), Methods of Differential Calculus (1755), Methods of the Int. C. (1768) Lagrange – The Theory of Analytic Functions, containing the principles of the differential calculus, released…quantities (1797)

6 Algebra and Number Theory Systems of linear equations Maclaurin – Introduces Cramer’s Rule (before Cramer!) (1730’s) Polynomial equations Maclaurin – Gives well-organized form for solving polynomial equations through degree 4 and Newton’s numerical approx. method Euler – Gives a fuller treatment and notes that he cannot give any formulas for 5 th degree and above Lagrange – Also attempts to find a general solution for the n th degree eq. Number theory Euler – Gives his proof of Fermat’s Last Theorem for n = 3.

7


Download ppt "The Age of Euler. The Bernoullis Images from MacTutor Jakob I 1654-1705 Johann I 1667-1748 Nicholaus III 1695-1726 Daniel I 1700-1782 Johann II 1710-1795."

Similar presentations


Ads by Google