Download presentation
Presentation is loading. Please wait.
Published byIra Alexander Modified over 9 years ago
2
ATM OCN 100 Summer 2002 1 ATM OCN 100 - Spring 2002 LECTURE 20 (con’t.) THE THEORY OF WINDS: PART III - RESULTANT ATMOSPHERIC MOTIONS (con’t.) A. Introduction & Assumptions Buys-Ballot Law Hydrostatic Balance Relationship B. Horizontal Equation of Motion Local Winds Geostrophic Winds Winds in Friction Layer
3
ATM OCN 100 Summer 2002 2 A89 - 100 AB85 - 88 B75 - 84 BC69 - 74 C51 - 68 D40 - 50 F< 39 Mean = 70
4
ATM OCN 100 Summer 2002 3Announcements u Homework 6: –Has been posted at –http://www.aos.wisc.edu/~hopkins/aos100/homework http://www.aos.wisc.edu/~hopkins/aos100/homework –Will be due 1 week from today (3 Dec. 2001) u Homeworks 1-5: –Have been graded and are available up front; please retrieve yours –Answer Keys are posted on the Web at: –http://www.aos.wisc.edu/~hopkins/aos100/homework; u 2 nd Hour Exam: –Has been graded and returned (up front) –The exam stats are posted at: –http://www.aos.wisc.edu/~hopkins/aos100/exams. http://www.aos.wisc.edu/~hopkins/aos100/exams
5
MADISON’S CURRENT WEATHER At 900 AM CST WED NOV 28 2001 Updated twice an hour at :05 and :25 Sky/Weather: CLOUDY Temperature: 35 F (1 C) Dew Point: 33 F (0 C) Relative Humidity: 92% Wind: NE8 MPH Barometer: 30.27R
6
ATM OCN 100 Summer 2002 5 Last 24 hrs in Madison Example of Cold Front Passage & Cold Air Advection
7
ATM OCN 100 Summer 2002 6 Surface Weather Map from Today with Isobars & Fronts
8
ATM OCN 100 Summer 2002 7 CURRENT IR
9
ATM OCN 100 Summer 2002 8 CURRENT VISIBLE
10
ATM OCN 100 Summer 2002 9 Surface Weather Map from Today with Isobars & Fronts
11
ATM OCN 100 Summer 2002 10 Current Temperatures ( o F) & Isotherms
12
ATM OCN 100 Summer 2002 11 24 hour Temperature Change (Fahrenheit Degrees) [Current – Sun AM] ( o F) & Isotherms
13
ATM OCN 100 Summer 2002 12 Current Dewpoints ( o F)
14
ATM OCN 100 Summer 2002 13 Tomorrow’s 7AM Forecast
15
MADISON’S CURRENT WEATHER Madison Weather at 1000 AM CDT 30 JUL 2002 Updated twice an hour at :05 and :25 Sky/Weather: SUNNY Temperature: 80 F (26 C) Dew Point: 69 F (20 C) Relative Humidity: 69% Wind: SW8 MPH Barometer: 30.00F (1015.9 mb)
16
ATM OCN 100 Summer 2002 15 Last 24 hrs in Madison FOG
17
ATM OCN 100 Summer 2002 16 http://www.ssec.wisc.edu/data/comp/cmoll.mpg
18
17 CURRENT VISIBLE
19
ATM OCN 100 Summer 2002 18 CURRENT IR
20
ATM OCN 100 Summer 2002 19 Current Surface Weather Map with Isobars (“iso” = equal & “bar” = weight), Fronts and Radar Tight Isobar Packing
21
ATM OCN 100 Summer 2002 20 Current Surface Winds with Streamlines & Isotachs (“iso” = equal & “tach” = speed) L L H L L L H L H H H LL H L Strong winds with Tight Isobar Packing H L L H H
22
ATM OCN 100 Summer 2002 21 Current Temperatures ( ° F) & Isotherms (“iso” = equal +”therm” = temperature)
23
ATM OCN 100 Summer 2002 22 Current Temperatures ( o F) – 24 Hrs Ago Cold Advection + Drier Air
24
ATM OCN 100 Summer 2002 23 Current Dewpoints ( o F)
25
ATM OCN 100 Summer 2002 24 Tomorrow AM Forecast Map
26
ATM OCN 100 Summer 2002 25 Announcements u 2 nd Hour Exam has been returned. u See exam statistics on http://www.aos.wisc.edu/~hopkins/aos100/exams http://www.aos.wisc.edu/~hopkins/aos100/exams u Homework #4 also has been returned. Answer Key is posted at http://www.aos.wisc.edu/~hopkins/aos100/homework http://www.aos.wisc.edu/~hopkins/aos100/homework u If you have ??, please see me.
27
ATM OCN 100 Summer 2002 26 ATM OCN 100 - Spring 2002 LECTURE 20 (con’t.) THE THEORY OF WINDS: PART III - RESULTANT ATMOSPHERIC MOTIONS (con’t.) A. Introduction & Assumptions Buys-Ballot Law Hydrostatic Balance Relationship B. Horizontal Equation of Motion
28
ATM OCN 100 Summer 2002 27 ATM OCN 100 - Spring 2002 LECTURE 20 (con’t.) THE THEORY OF WINDS: PART III - RESULTANT ATMOSPHERIC MOTIONS (con’t.) A. Introduction & Assumptions Buys-Ballot Law
29
ATM OCN 100 Summer 2002 28 ATM OCN 100 - Spring 2002 LECTURE 20 THE THEORY OF WINDS: PART III - RESULTANT ATMOSPHERIC MOTIONS A. INTRODUCTION –Why do winds circulate around low pressure in a counterclockwise motion? –Buys-Ballot Rule; –Fundamental assumptions.
30
ATM OCN 100 Summer 2002 29 Buys Ballot Rule
31
ATM OCN 100 Summer 2002 30 Current Midwest Weather Plot
32
ATM OCN 100 Summer 2002 31 Current Midwest Weather Plot
33
ATM OCN 100 Summer 2002 32 Isobars - - lines of equal barometric pressure - use sea level corrected pressure
34
ATM OCN 100 Summer 2002 33 Current Midwest Weather Analysis
35
ATM OCN 100 Summer 2002 34 Current Midwest Weather Analysis L H
36
ATM OCN 100 Summer 2002 35 BUYS-BALLOT RULE u Empirical relationship stated by Dutch meteorologist Buys-Ballot in 1850’s; u With your back to wind, Low pressure is to your left in Northern Hemisphere; u However, in Southern Hemisphere, Low is to your right ; u Mathematically proved by American meteorologist Wm. Ferrel in 1850’s.
37
ATM OCN 100 Summer 2002 36 Current Midwest Weather Analysis
38
ATM OCN 100 Summer 2002 37 Current Winds LLLH H
39
ATM OCN 100 Summer 2002 38 Goal u Attempt to develop simple models to explain atmospheric motions appearing on surface weather maps
40
ATM OCN 100 Summer 2002 39 ASSUMPTIONS For convenience, assume that: u Define motion in terms of horizontal & vertical components. u Rationale : –Winds are nearly horizontal; –Vertical motions typically much smaller. u Make assumptions about the balance of forces:
41
ATM OCN 100 Summer 2002 40 Summary of Forces for selected models See Table 9.1 Moran & Morgan (1997) MODELS
42
ATM OCN 100 Summer 2002 41 ASSUMPTIONS For convenience, assume that: u Winds are nearly horizontal; u Atmosphere is in nearly “hydrostatic balance” i.e., air parcels do not accelerate upward or downward; u Define motion in terms of horizontal & vertical components.
43
ATM OCN 100 Summer 2002 42 B. HORIZONTAL EQUATION OF ATMOSPHERIC MOTION u The 3-D vector Equation of Atmospheric Motion can be written in terms of horizontal and vertical components: Net force = Horizontal Pressure gradient force + Vertical Pressure gradient force + gravity + Coriolis force + friction.
44
ATM OCN 100 Summer 2002 43 HYDROSTATIC BALANCE CONCEPT u A Fundamental Assumption: –Earth’s atmosphere remains and is essentially in “hydrostatic balance”. u The Model – –This balance is between the vertically oriented vector quantities: –gravity, & –acceleration due to vertical component of pressure gradient force.
45
ATM OCN 100 Summer 2002 44 Concept of Hydrostatic Balance Fig. 9.11 Moran & Morgan (1997)
46
ATM OCN 100 Summer 2002 45 Components in Hydrostatic Balance Model Fig. 9.11 Moran & Morgan (1997) Gravity Vector Direction: “Down” toward Earth center Gravity Vector Magnitude: Decreases with altitude... But 9.8 m/s 2 or 32 ft/s 2
47
ATM OCN 100 Summer 2002 46 Components in Hydrostatic Balance Model Fig. 9.11 Moran & Morgan (1997) Gravity Vector Direction: “Down” toward Earth center Gravity Vector Magnitude: Decreases with altitude... But 9.8 m/s 2 or 32 ft/s 2 Vert. Press. Grad. Force Vector Direction: “Up” from High to Low Pressure Vert. Press. Grad. Force Vector Magnitude: Depends upon Vert. Pressure Grad. & Density
48
ATM OCN 100 Summer 2002 47 Summary of Forces for selected models See Table 9.1 Moran & Morgan (1997) MODELS
49
ATM OCN 100 Summer 2002 48 HYDROSTATIC BALANCE CONCEPT See Fig. 9.11 Moran & Morgan (1997)
50
ATM OCN 100 Summer 2002 49 THE VERTICAL PRESSURE GRADIENT FORCE u Magnitude of Vertical Pressure Gradient force vector is: – a function of both air density & vertical component of pressure gradient. u Direction of Vertical Pressure Gradient force is: – always pointed upward, from high pressure (near surface) to low pressure (aloft).
51
ATM OCN 100 Summer 2002 50 HYDROSTATIC BALANCE CONCEPT (con’t.) u Assume that acceleration of gravity is essentially constant with altitude; u Air pressure ALWAYS decreases with increased altitude in atmosphere; u But, rate of pressure decrease with altitude depends upon density of air column: –Decrease is more rapid in cold, dense air column than in warm, less dense column.
52
ATM OCN 100 Summer 2002 51 VERTICAL PRESSURE GRADIENTS - Dependency on density (temperature)
53
ATM OCN 100 Summer 2002 52 VERTICAL PRESSURE GRADIENTS Fig. 2 pg. 251 Moran & Morgan (1997)
54
ATM OCN 100 Summer 2002 53 HYDROSTATIC BALANCE CONCEPT (con’t.) In summary, acceleration vectors of gravity and vertical pressure gradient are equal in magnitude, but opposite in direction: F Net, V = 0 = F PG,V + g or F PG,V = - g (A vector summation). u A balance exists between these vertically oriented vector quantities, meaning no net vertical force nor acceleration!
55
ATM OCN 100 Summer 2002 54 HYDROSTATIC BALANCE CONCEPT (con’t.) u A balance exists between: –vertical pressure gradient force –gravity – meaning no net vertical force nor acceleration!
56
ATM OCN 100 Summer 2002 55 HYDROSTATIC BALANCE CONCEPT (con’t.) u As a result –The atmosphere is maintained; –Convection is somewhat limited.
57
ATM OCN 100 Summer 2002 56 THE HORIZONTAL PRESSURE GRADIENT FORCE u Parcels are accelerated in horizontal direction from High to Low pressure. u Direction of force & resulting accelerating motion is perpendicular to isobars on a surface weather map. u Magnitude of acceleration is inversely proportional to isobar spacing. – (i.e., greater horizontal pressure gradient force with tightly packed isobars).
58
ATM OCN 100 Summer 2002 57 HORIZONTAL PRESSURE GRADIENT FORCE Horiz. Press. Grad. Force Vector Direction: Vector Direction: High to Low & Perpendicular to the Isobars!
59
ATM OCN 100 Summer 2002 58 HORIZONTAL PRESSURE GRADIENT FORCE (con’t.) See Fig. 9.1 Moran & Morgan (1997) Magnitude of Pressure Gradient depends on isobar spacing!
60
ATM OCN 100 Summer 2002 59 As a Result of the HORIZONTAL PRESSURE GRADIENT FORCE (con’t.) Horiz. Press. Grad. Force Vector Magnitude: Depends upon Horiz. Pressure Gradient (i.e., isobar spacing)
61
ATM OCN 100 Summer 2002 60 AS A RESULT - u The 3-D vector Equation of Atmospheric Motion can be rewritten: Horizontal Component: Net horizontal force = Horizontal Pressure gradient force + + Coriolis force + friction; F Net, H = F PG,H + F Cor + F Friction (A vector summation).
62
ATM OCN 100 Summer 2002 61 AS A RESULT (con’t.) Vertical Component: Vertical Pressure gradient force + gravity Since: Net vertical force = 0 = Vertical Pressure gradient force + gravity F PG,V + g = 0. (A vector summation). (a statement of Hydrostatic Balance Assumption ).
63
ATM OCN 100 Summer 2002 62 Modeling of Atmospheric Motion - u The 3-D vector Equation of Atmospheric Motion can be rewritten: u Vertical Component Net vertical force = 0 = Vertical Pressure gradient force + gravity u Horizontal Component: Net horizontal force = Horizontal Pressure gradient force + + Coriolis force + friction; (A vector summation).
64
ATM OCN 100 Summer 2002 63 Recall VERTICAL PRESSURE GRADIENTS - Dependency on density (temperature)
65
ATM OCN 100 Summer 2002 64 C. FLOW RESPONDING TO PRESSURE GRADIENT FORCE - LOCAL WINDS u Assumptions: –Only Pressure gradient force operates due to local pressure differences; –Horizontal flow. – Net force = pressure gradient force u Examples: –Sea-Land Breeze Circulation –Mountain-Valley Breeze Circulation –City-Country Circulation
66
ATM OCN 100 Summer 2002 65 VERTICAL PRESSURE GRADIENTS - Dependency on density (temperature)
67
ATM OCN 100 Summer 2002 66 Sea-Land Breeze Circulation Regime Figure 12.2 Moran & Morgan (1997)
68
ATM OCN 100 Summer 2002 67 Sea (Lake) Breeze (Graphics from UIUC WW2010)
69
ATM OCN 100 Summer 2002 68 REASONS FOR LAND-SEA TEMPERATURE DIFFERENCES u Water has higher heat capacity – Smaller temperature response for heat added u Water is a fluid – Mixing warm water downward u Water is transparent – Sunlight penetrates to depth u Water surface experiences evaporation – Evaporative cooling
70
ATM OCN 100 Summer 2002 69 Sea (Lake) Breeze (con’t.)
71
ATM OCN 100 Summer 2002 70 Sea (Lake) Breeze (con’t.)
72
ATM OCN 100 Summer 2002 71 Sea (Lake) Breeze (con’t.)
73
ATM OCN 100 Summer 2002 72 Sea (Lake) Breeze (con’t.)
74
ATM OCN 100 Summer 2002 73 Sea (Lake) Breeze (con’t.)
75
ATM OCN 100 Summer 2002 74 Sea (Lake) Breeze (con’t.) (Lake)
76
ATM OCN 100 Summer 2002 75 Sea (Lake) Breeze (con’t.) See Fig. 12.2 A Moran & Morgan (1997)
77
ATM OCN 100 Summer 2002 76 Lake Breeze Circulation over Lake Michigan Figure 12.3 Moran & Morgan (1997)
78
ATM OCN 100 Summer 2002 77 Edge of lake breeze on southern Lake Michigan Modis 21 May 2002
79
ATM OCN 100 Summer 2002 78 Land Breeze
80
ATM OCN 100 Summer 2002 79 Land Breeze (con’t.)
81
ATM OCN 100 Summer 2002 80 Land Breeze (con’t.)
82
ATM OCN 100 Summer 2002 81 Land Breeze (con’t.) See Fig. 12.2 B Moran & Morgan (1997)
83
ATM OCN 100 Summer 2002 82 Mountain Breeze See Fig. 12.14 Moran & Morgan (1997)
84
ATM OCN 100 Summer 2002 83 Valley Breeze See Fig. 12.14 Moran & Morgan (1997)
85
ATM OCN 100 Summer 2002 84 D. STRAIGHT-LINE, BALANCED, FRICTIONLESS MOTION - “GEOSTROPHIC FLOW” u A powerful conceptual model involving horizontal motion on rotating planet; u Background & Word Derivation: –Named by Sir Napier Shaw in 1916: “Geo” = earth + “strephein” = to turn.
86
ATM OCN 100 Summer 2002 85 Summary of Forces for selected models See Table 9.1 Moran & Morgan (1997) MODELS
87
ATM OCN 100 Summer 2002 86 “GEOSTROPHIC FLOW” (con’t.) u Assumptions –horizontal flow (F PG,V + g = 0); –balanced flow (F Net, H = 0); –no friction (F Friction = 0); –straight line flow (with straight isobars) (F Centripetal = 0); –parallel and equally spaced isobars (F PG,H = constant). u Initiation of Geostrophic Flow
88
ATM OCN 100 Summer 2002 87 “GEOSTROPHIC FLOW” (con’t.) Assumptions Straight isobars Parallel isobars No friction Horizontal flow
89
ATM OCN 100 Summer 2002 88 Geostrophic Adjustment See Fig. 9.12 Moran & Morgan (1997)
90
ATM OCN 100 Summer 2002 89 Geostrophic Adjustment http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/fw/geos.rxml
91
ATM OCN 100 Summer 2002 90 Geostrophic Wind See Fig. 9.12 Moran & Morgan (1997) Represents a balance between Horiz. Pressure Gradient Force Horiz. Coriolis Force
92
ATM OCN 100 Summer 2002 91 “GEOSTROPHIC FLOW” (con’t.) u Resultant Geostrophic Flow –Balance between horizontal components of pressure gradient & Coriolis forces, or 0 = F PG,H + F Cor (A vector summation). u Geostrophic Wind vector (V g ) can be described as:
93
ATM OCN 100 Summer 2002 92 Geostrophic Wind Vector See Fig. 9.12 Moran & Morgan (1997) Vector Direction: Parallels isobarsParallels isobars Low to left in NHLow to left in NH Vector Magnitude depends on : 1. Pressure Gradient 2. Latitude
94
ATM OCN 100 Summer 2002 93 “GEOSTROPHIC FLOW” (con’t.) u Direction of V g vector is: –parallel to isobars, with L ow pressure to left (in Northern Hemisphere); u Magnitude of V g vector is related: –Directly to pressure gradient; –Inversely to Coriolis force (i.e., latitude).
95
ATM OCN 100 Summer 2002 94 “GEOSTROPHIC FLOW” (con’t.) u Implications of Geostrophic Balance –Geostrophic wind (V g ) is: F a hypothetical wind F a balance between –horizontal pressure gradient (isobar spacing) –latitude (or Coriolis effect) u Dilemma
96
ATM OCN 100 Summer 2002 95 Current Midwest Weather Analysis L H
97
ATM OCN 100 Summer 2002 96 E. BALANCED FLOW in FRICTION LAYER u The Nature of Friction u The Friction Layer u The Effect of Friction upon the Geostrophic Wind u Assumptions –Same as for geostrophic wind case, except F Friction is not zero.
98
ATM OCN 100 Summer 2002 97 Flow in Friction Layer See Fig. 9.15 Moran & Morgan (1997) FrictionSubgeostrophic No Friction Geostrophic
99
ATM OCN 100 Summer 2002 98 Wind Vector in Friction Layer See Fig. 9.15 Moran & Morgan (1997) Vector Direction: Angles across isobarsAngles across isobars Toward Low in either hemisphereToward Low in either hemisphere Vector Magnitude 1. Depends on Friction 2. Less than Geostrophic Wind
100
ATM OCN 100 Summer 2002 99 FLOW IN FRICTION LAYER (con’t.) u Resultant Motion 0 = F PG,H + F Cor + F Friction (A vector summation). –Magnitude of flow is less than geostrophic wind. –Direction of flow is turned at angle across isobars toward L ow pressure in either hemisphere.
101
ATM OCN 100 Summer 2002 100 Buys Ballot Rule
102
ATM OCN 100 Summer 2002 101 Observation: “ Right with Height”
103
ATM OCN 100 Summer 2002 102 Variation of Friction Effects with Height See Fig. 9.16 Moran & Morgan (1997) NOTE: “Right with height”
104
ATM OCN 100 Summer 2002 103 FLOW IN FRICTION LAYER (con’t.) u Variations of Near-Surface Winds with Height –Wind speeds reach zero at surface & increase to geostrophic at top of friction layer; –Wind direction at lower levels turned more toward L ow, then become parallel to isobars; –The result, a wind spiral is formed.
105
ATM OCN 100 Summer 2002 104 Varying effects of Surface Roughness
106
ATM OCN 100 Summer 2002 105 Variations in Surface Roughness leads to divergence/convergence patterns See Fig. 9.22 Moran & Morgan (1997)
107
ATM OCN 100 Summer 2002 106 F. CURVED, HORIZONTAL BALANCED MOTION - “GRADIENT FLOW” u Assumptions –horizontal flow ( F PG,V + g = 0); –no friction (F Friction = 0); –curved flow (with curved isobars) (F Centripetal = F Net, H ); –concentric and equally spaced isobars (F PG,H = constant).
108
ATM OCN 100 Summer 2002 107 F. CURVED, HORIZONTAL BALANCED MOTION - “GRADIENT FLOW” u Assumptions –Without Friction u Two Cases
109
ATM OCN 100 Summer 2002 108 Curved Flow
110
ATM OCN 100 Summer 2002 109 Summary of Forces for selected models See Table 9.1 Moran & Morgan (1997) MODELS
111
ATM OCN 100 Summer 2002 110 “GRADIENT” FLOW: ANTICYCLONIC Case See Fig. 9.13 Moran and Morgan (1997):
112
ATM OCN 100 Summer 2002 111 “GRADIENT” FLOW: ANTICYCLONIC Case See Fig. 9.13 Moran and Morgan (1997):
113
ATM OCN 100 Summer 2002 112 “GRADIENT” FLOW: CYCLONIC Case See Fig. 9.14 Moran and Morgan (1997):
114
ATM OCN 100 Summer 2002 113 “GRADIENT” FLOW: CYCLONIC Case See Fig. 9.14 Moran and Morgan (1997):
115
ATM OCN 100 Summer 2002 114 “GRADIENT FLOW” (con’t.) Resultant flow without Friction F Centripetal = F PG,H + F Cor (A vector summation). u Two cases: –Cyclonic Flow (around a low pressure cell) –Anticyclonic Flow (around a high pressure cell)
116
ATM OCN 100 Summer 2002 115 “GRADIENT FLOW” (con’t.) See Moran and Morgan (1997): u Figure 9.14 Cyclonic Flow u Figure 9.13 Anticyclonic Flow
117
ATM OCN 100 Summer 2002 116 G. GRADIENT FLOW WITH FRICTION Resultant flow with Friction F Centripetal = F PG,H + F Cor + F Friction (A vector summation).
118
ATM OCN 100 Summer 2002 117 Summary of Forces for selected models See Table 9.1 Moran & Morgan (1997)
119
ATM OCN 100 Summer 2002 118 G. GRADIENT FLOW WITH FRICTION Resultant flow with Friction F Centripetal = F PG,H + F Cor + F Friction (A vector summation). u Applicability to the Atmosphere u Situation u Resultant Diagrams
120
ATM OCN 100 Summer 2002 119 Anticyclonic Flow in Friction Layer Fig. 9.17 Moran & Morgan (1997)
121
ATM OCN 100 Summer 2002 120 Cyclonic Flow in Friction Layer Fig. 9.18 Moran & Morgan (1997)
122
ATM OCN 100 Summer 2002 121 Near-Surface Winds in each Hemisphere See Figs. 9.17 & 9.18 Moran & Morgan (1997)
123
ATM OCN 100 Summer 2002 122 Summary of Forces for selected models See Table 9.1 Moran & Morgan (1997) MODELS
124
ATM OCN 100 Summer 2002 123 H. RELATIONSHIPS BETWEEN HORIZONTAL & VERTICAL MOTIONS u Dilemma u Convergence / Divergence u Principle of Mass Continuity
125
ATM OCN 100 Summer 2002 124 Features in a Surface Low (Convergence & Ascent)
126
ATM OCN 100 Summer 2002 125 Features in a Surface High (Sinking & Divergence)
127
ATM OCN 100 Summer 2002 126 H. RELATIONSHIPS BETWEEN HORIZONTAL & VERTICAL MOTIONS (con’t.) u Dines’ Compensation u Resultant Vertical Motions u Implications of Dines' Compensation
128
ATM OCN 100 Summer 2002 127 H. RELATIONSHIPS BETWEEN HORIZONTAL & VERTICAL MOTIONS u Dilemma u Convergence / Divergence u Principle of Mass Continuity u Dines' Compensation u Resultant Vertical Motions u Implications of Dines' Compensation
129
ATM OCN 100 Summer 2002 128 I. VORTICES & VORTICITY u Definitions u Characteristic Vortex Features
130
ATM OCN 100 Summer 2002 129Vorticity u Types of Vorticity Cyclonic Vorticity Anticyclonic Vorticity
131
ATM OCN 100 Summer 2002 130Vorticity u Conservation of Vorticity
132
ATM OCN 100 Summer 2002 131 LOCAL WINDS (con’t.)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.