Download presentation
Presentation is loading. Please wait.
Published byLester Howard Modified over 9 years ago
1
Lecture 2: The straight line By Dr. Samah Mohamed Mabrouk www.smmabrouk.faculty.zu.edu.eg By Dr. Samah Mohamed Mabrouk www.smmabrouk.faculty.zu.edu.eg
2
The straight line 1- Representation of a straight line. 2- Special positions of a straight line. 3- True length of a straight line. 6- Examples 4-The mutual position of two straight lines in the space 5-Traces of a str. Line
3
The straight line 1- Representation of a straight line. 1- Two points. 2- A point and direction C B d A m m
4
Represent the three projections of a straight line m{A(2,2,5)and B(6,5,1)} Z +, y - Z -, y + x +, y - x-, y + B1B1 A1A1 B2B2 A2A2 m3m3 B3B3 A3A3 m2m2 m1m1 m 1 is the horizontal projction m 2 is the vertical projction m 3 is the profile(side) projction
5
Find the missing projections Z +, y - Z -, y + x +, y - x-, y + B1B1 A1A1 B2B2 A2A2 m3m3 B3B3 A3A3 m2m2 m1m1 L : A 1 L : A 3 L : B 2 L : B 1 مساقط النقطه تقع على مساقط الخط
6
X +,y -- X --,y+ z +,y -- Z --,y + Special positions of a str. line 1- m // 1 (Horizontal line) m2m2 m3m3 m 1 = T.L الخط الموازى للمستوى مسقطه على هذا المستوى = طوله الحقيقى (True length)
7
X +,y -- X --,y+ z +,y -- Z --,y + 2- m // 2 frontal line m1m1 m3m3 m 2 = T.L ( m, 1 ) ( m, 2 ) ( m, 3 )
8
X +,y -- X --,y+ z +,y -- Z --,y + 3- m // 3 profile line m2m2 m1m1 m 3 = T.L
9
X +,y -- X --,y+ z +,y -- Z --,y + 4- m 1 m1m1 m 3 = T.L m 2 = T.L الخط العمودى على مستوى مسقطه على هذا المستوى = نقطة وعلى باقى المستويات = طول حقيقى
10
X +,y -- X --,y+ z +,y -- Z --,y + 5- m 2 m2m2 m 3 = T.L m 1 = T.L
11
X +,y -- X --,y+ z +,y -- Z --,y + 6- m 3 m3m3 m 2 = T.L m 1 = T.L
12
True length of a straight line Z +, y - Z -, y + x +, y - x-, y + B1B1 A1A1 B2B2 A2A2 m3m3 B3B3 A3A3 m2m2 m1m1 zBzB z AB zAzA T.L. of m B1B1 A1A1 z AB
13
True length of a straight line Z +, y - Z -, y + x +, y - x-, y + B1B1 A1A1 B2B2 A2A2 m3m3 B3B3 A3A3 m2m2 m1m1 y AB T.L. of m yAyA yByB B2B2 A2A2 y AB
14
True length of a straight line Z +, y - Z -, y + x +, y - x-, y + B1B1 A1A1 B2B2 A2A2 m3m3 B3B3 A3A3 m2m2 m1m1 x AB T.L. of m xAxA xBxB B3B3 A3A3 x AB
15
B1B1 T.L. of m A1A1 z AB B2B2 T.L. of m A2A2 y AB B3B3 T.L. of m A3A3 x AB Triangles of solution
16
Example(1): Find the true length of a straight line AB where A(2, 2, 5) and B(6, 3, 1) and then get the point C which at distance 2 from A Z +, y - Z -, y + x +, y - x-, y + B1B1 A1A1 B2B2 A2A2 y AB T.L. of AB 2 C2C2 [C] C1C1 y AB [B]
17
The mutual position of two straight lines in the space x 12 m1m1 n1n1 m2m2 n2n2 m n m 1 n 1, m 2 n 2, m 3 n 3 n2n2 m2m2 m1m1 n1n1 Q1Q1 Q2Q2 2- الخطان متقاطعان 1- الخطان متوازيان
18
The mutual position of two straight lines in the space x 12 n2n2 m2m2 m1m1 n1n1 Q1Q1 P2P2 2- الخطان متخالفان
19
Z +, y - Z -, y + x +, y - x-, y + H1H1 H2H2 m3m3 H3H3 m2m2 m1m1 Traces of a str. Line 1- Horizontal trace H are the points of intersection with principal plane H 2 and H 3 x-axis H 1 and H m z H =0, m 1 = H
20
Z +, y - Z -, y + x +, y - x-, y + V1V1 V2V2 m3m3 V3V3 m2m2 m1m1 Traces of a str. line L:V 2 L:V 3 2- Vertical trace V V 1 x, V 3 z V 2 and V m y V =0, m 2 = V
21
Z +, y - Z -, y + x +, y - x-, y + m3m3 L:S 3 m1m1 Traces of a str. line S1S1 S2S2 S3S3 3- Side trace S S 1 and S 2 z-axis x S =0, m 3 = S S 3 and S m m2m2
22
Z +, y - Z -, y + x +, y - x-, y + H1H1 V1V1 V2V2 H2H2 m3m3 H3H3 V3V3 m2m2 m1m1 Traces of a str. line S1S1 S2S2 S3S3
23
Example(2): Given A 2 B 2 the vertical projection of a segment AB and the horizontal projection A 1 of the point A and <(AB, 3 )=45 ,find the remaining projections of AB Z +, y - Z -, y + x +, y - x-, y + B1B1 A1A1 B2B2 A2A2 x AB yAyA A3A3 B3B3 T.L. of AB A3A3 B\3B\3 B3B3 yAyA L :B 3 L :A 3 L :B 1 45
24
Example(3): Given the straight line m in general position and a point A lying on m required, find a point M on m at a distance 4cm from A x +, y - x-, y + B1B1 A1A1 B2B2 A2A2 z AB m2m2 [M] m1m1 4 z AB M1M1 T.L. m M2M2
25
Example(4): Represent the two projections of an equilateral triangle ABC if its side AB is given and C(?, 1, ?) x +, y - B1B1 A1A1 B2B2 A2A2 y AB C1C1 y BC L :C 1 1 z AB y AC z AB T.L. of AB = AC T.L. of AB = AC = BC C2C2 T.L. of AB =AC A2A2 y AC C2C2 T.L. of AB =AC B2B2 y BC L :C 2 C2C2
26
X 12 Example (5): A cube ABCDA \ B \ C \ D \ is given by it’s vertex A \, it’s base ABCD 1 and it’s vertex C =(?, 5, ?), represent the cube by it’s two projections A2\A2\ A 1 \ =A 1 L: A 2, B 2, C 2, D 2 A2A2 T.L of square T.L of AC L: C 1 B2B2 D2D2 C2C2 B2\B2\ D2\D2\ C2\C2\ C 1 \ =C 1 D 1 \ =D 1 B 1 \ =B 1 B\B\ C\C\ C A\A\ A D\D\ D B 11 A 1 B 1 C 1 D 1 T.S A 2 B 2 C 2 D 2 x- axis
27
X +,y -- X --,y+ h2h2 h 1 = T.L f1f1 f 2 = T.L h // 1 f // 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.