Download presentation
Presentation is loading. Please wait.
Published byAustin Nicholson Modified over 9 years ago
1
ETH Zurich – Distributed Computing – www.disco.ethz.ch Silvio Frischknecht, Barbara Keller, Roger Wattenhofer Convergence in (Social) Influence Networks
3
Simple World 2 Opinions: Opinion changes: Whatever the majority of my friends think
4
b
5
b
6
b
7
b
8
b
9
What Can Happen? and/or Goles and Olivios 1980
11
Easy Lower Bound: Ω(n)
16
Upper Bound: v
17
v
18
v
19
Good edge: Friend takes advised opinion on next day Bad edge: Friend does not take the proposed opinion v Upper Bound:
20
Good edge: Friend takes advised opinion on next day Bad edge: Friend does not take the proposed opinion v tt+1t+2 v g b g: Nr. of good edges b: Nr. of bad edges case g > b Upper Bound:
21
Good edge: Friend takes advised opinion on next day Bad edge: Friend does not take the proposed opinion v tt+1t+2 v g b g: Nr. of good edges b: Nr. of bad edges case g > b Upper Bound:
22
Good edge: Friend takes advised opinion on next day Bad edge: Friend does not take the proposed opinion v tt+1t+2 v g b g: Nr. of good edges b: Nr. of bad edges case g > b Upper Bound:
23
v tt+1t+2 v g b case b > g g: Nr. of good edges b: Nr. of bad edges Upper Bound:
24
v tt+1t+2 v g b case b > g g: Nr. of good edges b: Nr. of bad edges Upper Bound:
25
v tt+1t+2 v g b case b > g g: Nr. of good edges b: Nr. of bad edges Upper Bound:
26
v tt+1t+2 v g b case b > g g: Nr. of good edges b: Nr. of bad edges Upper Bound: b g
27
Tight Bound? Lower boundUpper bound vs.
28
Let`s Vote vs.
30
Simpler Example:
33
A Transistor
35
B C E B C E
36
B C E E C B B C E B E C
37
BB C EE C B C E
38
BBB EEE CCC B E C BB CC EE
44
Other Results Iterative model: Adversary picks nodes instead of synchronous rounds: 1 Step = 1 node change its opinion
45
Convergence Time: θ(n²)
46
Iterative Model Benevolent algorithm: θ(n)
47
תודה רבה
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.