Presentation is loading. Please wait.

Presentation is loading. Please wait.

ETH Zurich – Distributed Computing – www.disco.ethz.ch Silvio Frischknecht, Barbara Keller, Roger Wattenhofer Convergence in (Social) Influence Networks.

Similar presentations


Presentation on theme: "ETH Zurich – Distributed Computing – www.disco.ethz.ch Silvio Frischknecht, Barbara Keller, Roger Wattenhofer Convergence in (Social) Influence Networks."— Presentation transcript:

1 ETH Zurich – Distributed Computing – www.disco.ethz.ch Silvio Frischknecht, Barbara Keller, Roger Wattenhofer Convergence in (Social) Influence Networks

2

3 Simple World 2 Opinions: Opinion changes: Whatever the majority of my friends think

4 b

5 b

6 b

7 b

8 b

9 What Can Happen? and/or Goles and Olivios 1980

10

11 Easy Lower Bound: Ω(n)

12

13

14

15

16 Upper Bound: v

17 v

18 v

19 Good edge: Friend takes advised opinion on next day Bad edge: Friend does not take the proposed opinion v Upper Bound:

20 Good edge: Friend takes advised opinion on next day Bad edge: Friend does not take the proposed opinion v tt+1t+2 v g b g: Nr. of good edges b: Nr. of bad edges case g > b Upper Bound:

21 Good edge: Friend takes advised opinion on next day Bad edge: Friend does not take the proposed opinion v tt+1t+2 v g b g: Nr. of good edges b: Nr. of bad edges case g > b Upper Bound:

22 Good edge: Friend takes advised opinion on next day Bad edge: Friend does not take the proposed opinion v tt+1t+2 v g b g: Nr. of good edges b: Nr. of bad edges case g > b Upper Bound:

23 v tt+1t+2 v g b case b > g g: Nr. of good edges b: Nr. of bad edges Upper Bound:

24 v tt+1t+2 v g b case b > g g: Nr. of good edges b: Nr. of bad edges Upper Bound:

25 v tt+1t+2 v g b case b > g g: Nr. of good edges b: Nr. of bad edges Upper Bound:

26 v tt+1t+2 v g b case b > g g: Nr. of good edges b: Nr. of bad edges Upper Bound: b g

27 Tight Bound? Lower boundUpper bound vs.

28 Let`s Vote vs.

29

30 Simpler Example:

31

32

33 A Transistor

34

35 B C E B C E

36 B C E E C B B C E B E C

37 BB C EE C B C E

38 BBB EEE CCC B E C BB CC EE

39

40

41

42

43

44 Other Results Iterative model: Adversary picks nodes instead of synchronous rounds: 1 Step = 1 node change its opinion

45 Convergence Time: θ(n²)

46 Iterative Model Benevolent algorithm: θ(n)

47 תודה רבה


Download ppt "ETH Zurich – Distributed Computing – www.disco.ethz.ch Silvio Frischknecht, Barbara Keller, Roger Wattenhofer Convergence in (Social) Influence Networks."

Similar presentations


Ads by Google