Presentation is loading. Please wait.

Presentation is loading. Please wait.

Inma Domínguez Explosive Nucleosynthesis in Type Ia Supernovae Universidad de Granada Dust in EuroGENESIS environments: from primitive, massive stars to.

Similar presentations


Presentation on theme: "Inma Domínguez Explosive Nucleosynthesis in Type Ia Supernovae Universidad de Granada Dust in EuroGENESIS environments: from primitive, massive stars to."— Presentation transcript:

1 Inma Domínguez Explosive Nucleosynthesis in Type Ia Supernovae Universidad de Granada Dust in EuroGENESIS environments: from primitive, massive stars to novae Perugia, November 11-14 2012

2 Type Ia Supernovae Light Curve L time Thermonuclear Explosion of a White Dwarf composed of carbon and oxygen with a mass M~M Chandrasekhar  1.4 M  56 Ni  56 Co  56 Fe L MAX  M 56Ni M < 8 M   CO WDs < 1.1 M   Bright Standard Bombs

3 Distance indicators  Good Calibrated Candles  Bright

4 Parameterizing SNe Ia, the Cosmological Light House, by the Shape of their Light Curves M max -  m 15 MBMB Phillips 1993; 1999 ~ 0.2 mag Nearby SNe !! 15 d

5 The Nobel Prize in Physics 2011 for the discovery of the accelerating expansion of the Universe through observations of distant supernovae Adam Riess Saul Perlmutter (PI) http://www.nobelprize.org/mediaplayer/index.php?id=1745&view=1 SNC Project High-z Team Brian Schmidt (PI)

6 Could we reach the needed precision to understand Dark Energy,   ? Improve the Calibration ~ 0.2 mag  0.01 mag  CDM Cosmological Model Observations: Bright SNIa in Galaxies with Star Formation & in which the SN rate is higher !! Hamuy et al., 1995, 1996,2000, Ivanov et al. 2000 Branch et al. 1996, Mannucci et al 2005 Cappellaro et al. 2003, Sullivan el at. 2006 …

7  Identify 2nd parameters for the calibration  Does the calibration depend on redshift ?  Do SNe Ia depend on redshift ? Z/Age of progenitoe system ? Improve the Local Calibration ? Understand SNe Ia !!  What we know ?

8 Explosion of a Chandrasekhar mass CO WD in a binary system M ~ 1.4 M  R ~ 2000 km  c ~ 2 10 9 g/cm 3 v sound ~ 5000 km/s  = R/v sound ~ 1 s   exp ~ 1 s CO WD M Ch  C-burning  O-burning  Si-burning  NSE Fuel CO

9 Burning-scales  SNe scales WD 0.5C + 0.5O half-reaction length/time scales X C : C ini /2 X O : O ini /2  o < 2 10 7 g/cm 3 No NSE  o < 5 10 6 g/cm 3 No Si-burn  o < 10 6 g/cm 3 No O-burn O 0.6 MeV/nuc C 0.35 MeV/nuc Si, NSE 0.8 MeV/nuc Considering WD/explosion scales: Burning   nucleosynthesis

10 SNIa spectra at maximum light Branch et al. 1982 Intermediate mass elements (IME): O, Mg, Ca, Si, S Pskovskii 1969, Branch et al. 1982 Incomplete burning in the outer shells  Burning at low  < 10 7 g/cm 3 Si observed synthetic

11 EXPLOSIONS 1. Ignition E nuc > E 2. Convection  con <  nuc simmering phase 3. Runaway  nuc <  hyd  Explosive ignition 4. Propagation of the burning front  Laminar (conductive e - ) v << v sound  Deflagrations v < v sound turbulent mixing burn-unburnt  Detonations v  v sound 3D ?

12 Explosion 1D models  Nucleosynthesis Delayed Detonation C-deflagration NO  OK C-detonation IME missing  NO v burn first slow: Deflagration then (at  DDT ) accelerates: Detonation Khokhlov 1991  DetDef

13 Explosive Nucleosynthesis Delayed Detonations Center to 0.4 M  (T > 5.5 10 9 K): NSE e-captures (Y e  ) Bravo & Martínez-Pinedo 2012  Y e depends on initial Z & simmering phase 0.4 to 1.1 M  QSE Si-burning 1.1 to 1.2 M  O-burning 1.2 to 1.364 M  Ne-burning 1.364 to 1.366 M  C-burning 1.366 to 1.37 M  NO-burning Chemical layered structure DDT at 0.2 M  Inner 0.1 M  : 54 Fe, 58 Ni No 56 Ni

14 Explosive Nucleosynthesis Bravo & Martínez-Pinedo 2012            X > 0.01 M  Arnett, Truran, Woosley 1971 Thielemann, Nomoto, Yokoi 1984, 1986 Woosley & Weaver 1986 Khokhlov, 1991 Hoflich, Wheeler, Thielemann, 1998 Hoflich, Khokhlov, Wheeler, 1995 Iwamoto et al. 1999

15 SN Ia  “Normal SN Ia” 80% of SNe Ia  Produce ~ 0.6 M  56 Ni (full range: 0.1-1 M  )  Burn 1.1M  to Si and beyond  Consistent with M Ch WD Delayed-Detonation Explosions Khokhlov 1991 total burnt mass: IME + 54 Fe + 56 Ni Complete burning NSE 54 Fe + 56 Ni Neutron-rich elements, 54 Fe Mazzali et al. Science 2007 Zorro Diagram Produces 2/3 of the observed Fe in the Universe 56 Ni

16 1D Delayed Detonations M max  m 15  DDT : 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.3 2.5 2.7 x 10 7 g/cm 3  DDT  shorter pre-expansion  burn  56 Ni  IME (Ca, S, Si, Mg)  Ek Ek  Höflich et al.  DDT  56 Ni mass  L max

17 But 1D Delayed Detonation models  parameters !!! Progenitor system  Path to exploding WD ? Mechanism that produces the explosion ?  3D numerical simulations fail  Deflagration to Detonation transition in unconfined environments ? Do SNe Ia depend on redshift ? progenitor ? Z/Age ?  DDT   burn  56 Ni, IME We do not know…

18 Three Dimensional Simulations Deflagrations A. Khokhlov time=1.79 s Problems: CO at center No chemical layered structure Low E kin E kin  56 Ni mass Chicago, Flash, MPI, NRL, UPC  DDT Gamezo et al. 2005 Ropke 2007, 2011 Jackson et al. 2010  Gravitationally Confined Detonation Plewa 2004, Jordan et al. 2008, Meakin et al. 2009  Pulsating Reverse Detonations Alternatives Bravo & García-Senz Nucleosynthesis: Simplified  -network Flame scales not solved !! WD  2000 km flame thickness  cm

19  High resolution 3D detonations at low densities (outer layers) L = 200 km W= 25 km   24 m  = 10 6 g/cm 3 Khokhlov, Domínguez et al. 2012 C mass fraction Nucleosynthesis:  -network 13 nuclei 18 reactions  Deflagration to Detonation transition ?

20  Simmering phase ? Convective hydrostatic C-burning 23 Na & 25 Mg are important at T  4 10 8 K   1-4 10 9 g/cm 3 Morales-Garoffolo 2011 e-captures over light nuclei ? Influence Explosive C-ignition !!

21 URCA process ? Pierre Lessafre, KITP conference 1941 Cooling or heating ? ? Gamov and Shoënberg (1941) Urca pairs Bruenn 1973

22 Thermonuclear reaction rates: sensitivity study Bravo & Martínez Pinedo 2012 3138 nuclear reactions x10 1/10 12 C + 12 C 16 O + 16 O   E nuc < 4 %  X 0.02 28 Si, 32 S, 54 Fe, 56 Ni & 58 Ni  Not modified (p,  )  10 species changes  12% ( ,  )  33 species change  12%  simultaneous modification of nuclear reactions ?  weak interactions ?  resonances ?

23 12 C + 12 C with a Low Energy Resonance Bravo et al. 2011 Spillane et al. 2007 Influence runaway conditions: LER   -simmering   T     (if central) off-center ignition  Conv. Cores   12 C burnt   Y e  (α/p) 12 C + 12 C  23 Na + p 12 C + 12 C  20 Ne + α vs CF88

24 Dust formation in the ejecta of SNIa ? Nozawa et al. 2011 Kepler & Tycho SNR Gómez et al. 2012 400 yrs Dust observed (Herschel): M w,d  3 – 8 10 -3 M   Early (100 d) formation: 3 10 -4 to 0.2 M  / SNIa  Destruction (10 6 yr)

25 Dust in Type Ia Supernova Remnants  Poor producers of interstellar dust !! NO clear detection yet ! Gómez et al. 2012 Tycho SNR Dust (contours) is coincident with the outermost shockfront  swept up ISM or CSM X-rays Chandra Williams et al. 2012  Dust from progenitor system !! Kepler CSM Silicate dust Spitzer Kepler SNR: Massive AGB companion ? (N/N  > 2) Chiotellis et al. 2012 Williams et al. 2012

26 Tycho SNR (1572) NASA/SAO/JPL-CAHA Grazie Mille !!

27 Observations X, UV, optical, IR Hsiao et al. 2007, 2012 2001el Krisciunas Hsiao et al 2012 Fe-peak: late IR X-ray (SNR) Z progenitor: very early U-band IME: Early Optical spectra IR spectra, X-ray (SNR) Unburnt Carbon: NIR spectra

28 SN2011fe in M101 at 6.4 Mpc 56 Ni & 56 Co:  - ray  no detection yet ! upper limits SN2011fe: INTEGRAL observations 975419 s Isern et al. 2012 Dust: MIR & FIR Kepler SNR Gómez et al. 2012 Herschel

29 Proposed 1D Explosion Mechanisms  DET: pure C-detonation   DEF: pure deflagration  but …  DDT: delayed detonations DEF  DET  PDDT: pulsating delayed detonation  Sub-Ch: He-detonation in outer layers shock inward C-O detonation  Super-Chandrasekhar (rotation) 0.8 M  CO 0.2 M  He few 

30 From progenitors to LCs  M ch R ~ 2 10 8 cm  c ~ 2 10 9 g/cm 3 CO WD < 8M  < 1.1M  accretion T &  rise at  center Non explosive C-ignition Convection (simmering) Explosive C-ignition 1.5 M  : 2.2 Gyr 7 M  : 0.04 Gyr Cooling Gyr LC: 56 Ni  56 Co  56 Fe IME (O, Ca, Mg, Si, S) E nuc > E  nuc <  hyd Propagation of burning: IME  burning at  < 2 10 7 g/cm 3 Pre-expansion of the WD Delayed Detonations (1D) Key parameter:  DDT ? 3D ? C-expl

31 Z = 0.1 Z  Z = 3 Z  ZZ  Z: Calibration depends on Z !! Z  (   )  L max  0.5 mag  WD Age: cooling/crystallization 12 C   L max  0.4 mag  t > 1.25 Gyr Dependence of the transition density on composition ? Chamulak et al. 2007 Calibration relation vs Z ApJL Bravo et al. 2010, A&A 2011  SDSS in agreement with observations Sullivan et al. 2010

32 Influence of Z Bravo et al. 2010, Domínguez et al. 2001 56 Ni vs Z Timmes et al. 2003 ZZ  DDT ( 12 C,  ) 3Z  ZZ M MS : 3 – 7 M  Z ini : 10 -10 – 0.1  Including simmering : more e-captures  DDT fixed Neutronization  Z    56 Ni  L  56 Ni Mass & Distribution Further Neutronization: Simmering: e-cap. Slow deflagration: e-capt. Initial Z  22 Ne

33 Our Studies about the influence of Progenitors  Evolution  Explosion (1D) of the WD  Light Curve Initial Mass Initial chemical composition  c (WD cooling, accretion) Rotation (M T U bin  ig )  M MAX < 0.2 mag Domínguez et al. ApJ 2001, ApJ 2006, Bravo et al. 2010 The Majority of SNe Ia  Standard Bombs Good lighthouses !! OK for  To progress further  Nature of Dark Energy  Precision x 10  CONTROL ALL SYSTEMATIC

34 Numerical Methods STELLAR EVOLUTION & Accretion phase FRANEC (Chieffi, Domínguez, Imbriani, Limongi, Straniero) 1D Hydrostatic Code EXPLOSION & LIGHT CURVES 1D Radiation-Hydrodynamic Code (PPM) (Höflich, Khokhlov)   Ray transport Monte Carlo  3D simulations velocity of deflagration  Extended Nuclear Network  Extended Nuclear Network (700 isotopes)  Physics and Chemestry coupled  Time dependent mixing (Domínguez, Höflich) PMS  WD  Accretion  Explosive C-ignition

35 Light Curves Models M MS 1.5 7 M  L  WD Progenitors Z 0 0.02  M MAX < 0.05 Z     (B-V) < 0.07 Extinction  M MAX < 0.2 mag 14 % in 56 Ni mass Domínguez, Hoflich, Straniero 2001

36 SNe luminosities vs host galaxies Sullivan et al. 2010 After Correction !!! Low sSFR High M stellar (High Z) Brighter by 0.06-0.09 mag brighter dimmer M ste sSFR brighter dimmer

37 Information about the explosions from Hubble residuals ? HR = a +  Z   = 0.13   = 0.22 Simulations: 200 SNe M 56Ni = 1. - 0.075 Z/Z  M 56Ni = 1. - 0.18 Z/Z  (1. - 0.1 Z/Z  ) Bravo et al. 2010 Gallagher et al. 2008 Howell et al 2009 !! observed

38 Urgent work is demanded on...  Progenitors Observations/Theory Galactic chemical enrichment (Fe-peak)  3D Explosions free of parameters  Dust Extinction Different from Milky Way Evolution with z IR Hubble Diagrams  SN properties/Galaxy Properties (Age, Z, SFR)  Large Subsamples with smaller scatter split by properties Hubble diagrams including only passive galaxies  LCs & spectra from early time, including IR More Correlations: SN properties (spectra, colors...)/LC shape and Max Go to higher z

39 Joint Dark Energy Mission – NASA + DOE Ground Based Telescopes - Working Bright SNe Survey -CFHT Legacy Survey- Carniege SN Program - ESSENCE- Nearby SNe Factory- Nearby Galaxies SN Search - SN Intensive Study... Near future Pan-STARRS, La Silla SN-search, Skymapper, Palomar Transiente Factory... and more from Space under study SNIa up to z=4 Supernovae CMB Dark Matter BBN

40 Further information… Supernova Cosmology Project http://www-supernova.lbl.gov/ The High-Z SN Search http://www.cfa.harvard.edu/supernova//HighZ.html JDEM-Joint Dark Energy Mission (NASA-DOE) http://jdem.gsfc.nasa.gov/ Dark Cosmology Center at Niels Bohr Institute http://dark.nbi.ku.dk/

41 Peculiar SNe Ia !! Li et al 2003 Obseved V exp extremely low CaII 6000 km/s broad peak SN 2002cx Subluminous M B =-17.7  m 15 =1.29  Outside the calibration  Identification ?  Associated with Star Formation  More at high z !! 2001ay 2002cx 2002ic 2003fg from z=0 to 1.5 SFR x 10 Peculiar SNIa x 10 2002cx

42 Influence of the Progenitor DD Systems  Including ROTATION  Steady Accretion Balance between Angular Momentum deposition and Angular Momentum lost by GWR M > M Ch  Braking and Explosion Piersanti, Gagliardi, Iben & Tornambé 2003  WD rotation synchronized at the orbital frequency  Rotation determines the decrease of the accretion rate and, hence, it prevents the off-center C-ignition

43 SN 2003fg: Super-Chandrasekhar ?? z=0.24  Brighter by x 2.2  Normal Spectra !!  Lower expansion velocities  1.3 M  of 56 Ni  Progenitor: 2 M  WD Differential Rotation  Outside Maximum-decline relation !!!! 0.67 mag brighter Howell et al. Nature 2006 SNLS Team, CFHT L (erg/s) M Ni

44 DD Rotating models: LCs Domínguez et al 2006 56 Ni: 0.77  0.86 M  M bol : -19.5  -19.6  ig 46%U bin 22% Rigid rotation M < 1.5M  Ellipticals Spirals Piersanti et al 2009 Distribution of merging events  If More Massive  brighter OK Luminosity distribution OK SN Rates Differential Rotation M < 2.2 M  work in progress !!

45 Looking for the companion...  Supernova Progenitor Survey -ESO-SPY consortium DD: WD + WD FEW Napiwotzki et al. 2006  Precursors: Recurrent Novae RS Oph M WD ~ 1.38 M  Hachisu et al. 2006, Selvelli et al. 2003, Sokoloski et al. Nature 2006 X-ray progenitor observations : SN2007on in NGC1404 (E) 4 yr before  Direct hints from the companion ?? SD: WD + MS/RG/AGB Tycho SNR: companion detected (v) Ruiz-Lapuente et al. 2004 Nature - Spectroscopy: No Fe Ihara et al. 2007 + [Ni/Fe] = 0.16 Hernández, Ruiz-Lapuente et al. 2009  Interaction with the CSM (previous mass loss: SD vs DD) + 2002ic H !! Hamuy et al. 2003 Nature SD/DD + 2006X Patat et al. 2007 Science SD - 27 SNIa NO Radio (VLT) Panagia et al. 2006 NO SD - 2005am 2005cf, No H in nebular spectra Leonard 2007 NO SD  Historical SN remnants : Z of the progenitors, explosion etc. Badenes 2008-09  Sprectropolarimetry: asphericals ? disk ? SN 2001el Lifan et al. 2003

46 SNe Ia alone  m ~ 0.7  ~ 1.3 Clocchiatti et al. 2006  m ~ 0.8  ~ 1.6

47 Super-Chandrasekhar SN2007if Scalzo et al. 2010  2003fg -20.18 0.94  2006gz -19.29 0.69  2007if -20.54 0.71  2009dc -20.09 0.65 MBMB  m 15 M WD ~ 2.4 M  M Ni ~ 1.6 M 

48 Sub-Chandrasekhar Sim et al. 2010 Observations: Hicken et al. 2009 1.15 1.06 0.97 0.88 WD (M  ) Shen et al. 2010 Rise time: 2-10 days Spectra: CaII TiII (from He-DET)

49 He-Detonatios Science, Poznanski et al. 2010 Bildsten et al. 2007

50 Influence of Z Bravo, Domínguez, Badenes, Piersanti, Straniero 2010 Z = 0.1 Z  Z = 3Z  ZZ L MAX – width vs Z Observations (M Bol ) Contardo et al. 2000, Phillips et al 2006 Stanishev et al. 2007, Wang et al. 2009  DDT ( 12 C,  ) Assuming:  Different calibration for different Z for given  m 15 : Z   dimmer SNe 0.5 mag agreement with observations Sullivan et al. 2010 Z     (B-V) < 0.07 Extinction  Effect on colours at MAX Domínguez et al. 2001 Hoflich et al. 1998

51

52 SNIa Hubble Diagrams Expected (before 1998) Dimmer further Back in time Relative Distances  i =  i /  cr critical density ~ 6 H per m 3

53 12 years: evidence of   stronger  m ~ 0.3   ~ 0.7 400 SNe Ia Observations of SNe Ia alone   > 0 at 99% CL SNe Ia + Flat Universe (CMB)

54 Parameterizing SNe Ia by the Shape of their Light Curve M. Phillips (1993) & M. Hamuy et al. (1996 ) MBMB ~ 0.2 mag M max -  m 15 LOCAL calibration Valid at High-z ?

55 Light Curves LCs Radioactive energy Leibundgut 2003 56 Ni  56 Co  56 Fe  1/2 : 6.1 d 77.7 d  escape 56 Ni 0.4M  1.4M 

56 Radioactive Energy: Light Curves UBVRI M bol 56 Ni  -20 1.1 M   -17 0.1 M  To 1st order… Maximum Lmax  56 Ni mass 56 Ni  56 Co  56 Fe LC Shape E K = E nuc - E bin  T 56 Ni Distribution Contardo, Leibundgut, Vacca, 2001

57 Explosion mechanisms  DET: pure C-detonation  DEF: pure deflagration  DDT: delayed detonations DEF  DET  PDDT: pulsating delayed detonation: slow DEF  Sub-Ch: He-detonation in outer layers shock inward C-O detonation  Super-Ch (rotation) 0.8 M  CO 0.2 M  He  tr

58 EXPLOSIONS 1. Ignition in 1 or several spots ? 2. Runaway... Explosive ignition 3. Propagation of the burning front E nuc > E  nuc <  hyd  Laminar (conductive e - ) v <<  Deflagrations v < v sound  Detonations v  v sound

59 Influence of M MS & Z Bravo et al. 2010, Domínguez et al. 2001 56 Ni vs Z Timmes et al. 2003 ZZ  DDT ( 12 C,  ) dimmer Z 3Z  ZZ M MS : 3 – 7 M  Z ini : 10 -10 – 0.1  Including simmering : more e-captures   56 Ni  L  M MS  L max   tr fixed Z  (   ) L max 

60 Nucleosynthesis & Light Curves UBVRI M bol 56 Ni  -20 1.1 M   tr:  M max  -17 0.1 M  M max -  m 15 56 Ni Mass & Distribution Contardo, Leibundgut, Vacca, 2001 Neutronization  : Hoflich, Khokhlov 1996  tr  shorter pre-expansion  burn  56 Ni  IME (Ca, S, Si, Mg)  Stellar evolution: Z  22 Ne Simmering: e-cap. Slow deflagration: e-capt.   56 Ni 

61 Explosive Nucleosynthesis Baron et al. 2012 Mass fraction - velocity ( )

62 Piersanti et al. 2003a,b  acc <  cond 10 -5 M  /yr 10 -6 M  /yr 10 -7 M  /yr 10 -8 M  /yr ONe WD SNIa  acc >  cond > 10 -6 M  /yr < 10 -6 M  /yr CO over CO

63 Observations Sullivan el al. 2009 Contreras et al. 2010 Hsiao et al. 2007, 2012 UV, optical, IR

64  Distance indicators  Cosmology  Nucleosynthesis  Origin and evoution of the elements  Physics Laboratories: hydrodynamics, combustion, radiation transport, nuclear physics, high-energy physics…  Numerical simulations  testing capabilities of computers  Identify 2nd parameters for the calibration  Does the Calibration depend on redshift ? Improve the Local Calibration ? Understand SNe Ia !!

65 Nuclear Energy © Rolfs & Rodney 1988 BE/A  C-burning  O-burning  Si-burning  NSE Explosive burning in SNIa: Fuel is C-O:

66 Nuclear burning-scales  SNe explosion-scales  Specific heat C of degenerate matter decreases when  increases T increases when  increases  C <  O <  Si <  NSE X C < X O < X Si < X NSE  o < 2 10 7 g/cm 3 No NSE  o < 5 10 6 g/cm 3 No Si-burn  o < 10 6 g/cm 3 No O-burn R WD  Burning   nucleosynthesis  Resolution: at  c  cm !

67 Explosion: Propagation of the burning front  Laminar (conductive e - )  spontaneous  grad T  C/O v cond (v l ) ~ 0.01 v sound  Detonations  shock Hyd. eq. + E nuc v DET  v sound  Deflagrations  turbulent mixing burn-unburnt Rayleigh-Taylor instability 3D problem in 1D v DEF parametrized v DEF < v sound (  0.03 v sound )

68 Deflagration Rayleigh-Taylor instability 3D problem in 1D v DEF parametrized

69 Observed Mass Distribution of WDs few WDs  1.1 M  Samples Weidemann 2000 Bergeron, Green, Liebert, Saffer Vennes … & SDSS Segretain et al 97 0.6 M  ONe WDs or Mergers 298 DA WDs PG Survey Liebert et al. 2005

70 Any Path to the Chandrasekhar Mass ?? RG MS CO Accretion (DD) GWR H/He accretion (SD) 10 -5 M  /yr Piersanti & Tornambe

71 3D Pulsating Reverse Explosions Models Bravo & García-Senz ApJL2006 Bravo & García-Senz ApJ 2009 Bravo, García-Senz, Cabezon & Dominguez ApJ 2009 SPH PRD: Mass of the Hydrostatic core 56 Ni mass E k E k = 1.0 – 1.2 foe 56 Ni = 0.6 – 0.8 M  M burnt = 1.1 – 1.2 M  IME = 0.2 M  C < 0.13 M  at low v < 0.08 M  Chemical composition

72 Explosion & Energy WD binding energy 5-6 10 50 erg (~ 0.4 M  ) Fuel C & O Fe/Co/Ni  > 10 7 g/cm 3 S/Si > 5 10 6 g/cm 3 Mg/O/Ne > 10 5 g/cm 3 Observations unburnt C < 0.01 – 0.2 M  Nearly all M Ch WD is burnt Similar E k ~ 2 10 51 erg (in ~ 1 s) Similar E Nuc Magic density  ~ 10 7 g/cm 3

73 Nucleosynthesis & Kinetic Energy E K ~ 1.4 foe 1 foe = 10 51 erg v exp ~ 10000 km/s as observed !! Homologous expansion V r  r C/O > 20000 km/s IME < 20000 km/s Fe-peak < 10000 km/s 54 Fe, 58 Ni < 2000 km/s neutronized elements Hole of 56 Ni in the center Chemical layered … as observed ! V r = cte. 0.6 M  56 Ni E rad ~ 0.03 E K


Download ppt "Inma Domínguez Explosive Nucleosynthesis in Type Ia Supernovae Universidad de Granada Dust in EuroGENESIS environments: from primitive, massive stars to."

Similar presentations


Ads by Google