Download presentation
Presentation is loading. Please wait.
Published byAlban Peter Price Modified over 9 years ago
1
Inma Domínguez Explosive Nucleosynthesis in Type Ia Supernovae Universidad de Granada Dust in EuroGENESIS environments: from primitive, massive stars to novae Perugia, November 11-14 2012
2
Type Ia Supernovae Light Curve L time Thermonuclear Explosion of a White Dwarf composed of carbon and oxygen with a mass M~M Chandrasekhar 1.4 M 56 Ni 56 Co 56 Fe L MAX M 56Ni M < 8 M CO WDs < 1.1 M Bright Standard Bombs
3
Distance indicators Good Calibrated Candles Bright
4
Parameterizing SNe Ia, the Cosmological Light House, by the Shape of their Light Curves M max - m 15 MBMB Phillips 1993; 1999 ~ 0.2 mag Nearby SNe !! 15 d
5
The Nobel Prize in Physics 2011 for the discovery of the accelerating expansion of the Universe through observations of distant supernovae Adam Riess Saul Perlmutter (PI) http://www.nobelprize.org/mediaplayer/index.php?id=1745&view=1 SNC Project High-z Team Brian Schmidt (PI)
6
Could we reach the needed precision to understand Dark Energy, ? Improve the Calibration ~ 0.2 mag 0.01 mag CDM Cosmological Model Observations: Bright SNIa in Galaxies with Star Formation & in which the SN rate is higher !! Hamuy et al., 1995, 1996,2000, Ivanov et al. 2000 Branch et al. 1996, Mannucci et al 2005 Cappellaro et al. 2003, Sullivan el at. 2006 …
7
Identify 2nd parameters for the calibration Does the calibration depend on redshift ? Do SNe Ia depend on redshift ? Z/Age of progenitoe system ? Improve the Local Calibration ? Understand SNe Ia !! What we know ?
8
Explosion of a Chandrasekhar mass CO WD in a binary system M ~ 1.4 M R ~ 2000 km c ~ 2 10 9 g/cm 3 v sound ~ 5000 km/s = R/v sound ~ 1 s exp ~ 1 s CO WD M Ch C-burning O-burning Si-burning NSE Fuel CO
9
Burning-scales SNe scales WD 0.5C + 0.5O half-reaction length/time scales X C : C ini /2 X O : O ini /2 o < 2 10 7 g/cm 3 No NSE o < 5 10 6 g/cm 3 No Si-burn o < 10 6 g/cm 3 No O-burn O 0.6 MeV/nuc C 0.35 MeV/nuc Si, NSE 0.8 MeV/nuc Considering WD/explosion scales: Burning nucleosynthesis
10
SNIa spectra at maximum light Branch et al. 1982 Intermediate mass elements (IME): O, Mg, Ca, Si, S Pskovskii 1969, Branch et al. 1982 Incomplete burning in the outer shells Burning at low < 10 7 g/cm 3 Si observed synthetic
11
EXPLOSIONS 1. Ignition E nuc > E 2. Convection con < nuc simmering phase 3. Runaway nuc < hyd Explosive ignition 4. Propagation of the burning front Laminar (conductive e - ) v << v sound Deflagrations v < v sound turbulent mixing burn-unburnt Detonations v v sound 3D ?
12
Explosion 1D models Nucleosynthesis Delayed Detonation C-deflagration NO OK C-detonation IME missing NO v burn first slow: Deflagration then (at DDT ) accelerates: Detonation Khokhlov 1991 DetDef
13
Explosive Nucleosynthesis Delayed Detonations Center to 0.4 M (T > 5.5 10 9 K): NSE e-captures (Y e ) Bravo & Martínez-Pinedo 2012 Y e depends on initial Z & simmering phase 0.4 to 1.1 M QSE Si-burning 1.1 to 1.2 M O-burning 1.2 to 1.364 M Ne-burning 1.364 to 1.366 M C-burning 1.366 to 1.37 M NO-burning Chemical layered structure DDT at 0.2 M Inner 0.1 M : 54 Fe, 58 Ni No 56 Ni
14
Explosive Nucleosynthesis Bravo & Martínez-Pinedo 2012 X > 0.01 M Arnett, Truran, Woosley 1971 Thielemann, Nomoto, Yokoi 1984, 1986 Woosley & Weaver 1986 Khokhlov, 1991 Hoflich, Wheeler, Thielemann, 1998 Hoflich, Khokhlov, Wheeler, 1995 Iwamoto et al. 1999
15
SN Ia “Normal SN Ia” 80% of SNe Ia Produce ~ 0.6 M 56 Ni (full range: 0.1-1 M ) Burn 1.1M to Si and beyond Consistent with M Ch WD Delayed-Detonation Explosions Khokhlov 1991 total burnt mass: IME + 54 Fe + 56 Ni Complete burning NSE 54 Fe + 56 Ni Neutron-rich elements, 54 Fe Mazzali et al. Science 2007 Zorro Diagram Produces 2/3 of the observed Fe in the Universe 56 Ni
16
1D Delayed Detonations M max m 15 DDT : 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.3 2.5 2.7 x 10 7 g/cm 3 DDT shorter pre-expansion burn 56 Ni IME (Ca, S, Si, Mg) Ek Ek Höflich et al. DDT 56 Ni mass L max
17
But 1D Delayed Detonation models parameters !!! Progenitor system Path to exploding WD ? Mechanism that produces the explosion ? 3D numerical simulations fail Deflagration to Detonation transition in unconfined environments ? Do SNe Ia depend on redshift ? progenitor ? Z/Age ? DDT burn 56 Ni, IME We do not know…
18
Three Dimensional Simulations Deflagrations A. Khokhlov time=1.79 s Problems: CO at center No chemical layered structure Low E kin E kin 56 Ni mass Chicago, Flash, MPI, NRL, UPC DDT Gamezo et al. 2005 Ropke 2007, 2011 Jackson et al. 2010 Gravitationally Confined Detonation Plewa 2004, Jordan et al. 2008, Meakin et al. 2009 Pulsating Reverse Detonations Alternatives Bravo & García-Senz Nucleosynthesis: Simplified -network Flame scales not solved !! WD 2000 km flame thickness cm
19
High resolution 3D detonations at low densities (outer layers) L = 200 km W= 25 km 24 m = 10 6 g/cm 3 Khokhlov, Domínguez et al. 2012 C mass fraction Nucleosynthesis: -network 13 nuclei 18 reactions Deflagration to Detonation transition ?
20
Simmering phase ? Convective hydrostatic C-burning 23 Na & 25 Mg are important at T 4 10 8 K 1-4 10 9 g/cm 3 Morales-Garoffolo 2011 e-captures over light nuclei ? Influence Explosive C-ignition !!
21
URCA process ? Pierre Lessafre, KITP conference 1941 Cooling or heating ? ? Gamov and Shoënberg (1941) Urca pairs Bruenn 1973
22
Thermonuclear reaction rates: sensitivity study Bravo & Martínez Pinedo 2012 3138 nuclear reactions x10 1/10 12 C + 12 C 16 O + 16 O E nuc < 4 % X 0.02 28 Si, 32 S, 54 Fe, 56 Ni & 58 Ni Not modified (p, ) 10 species changes 12% ( , ) 33 species change 12% simultaneous modification of nuclear reactions ? weak interactions ? resonances ?
23
12 C + 12 C with a Low Energy Resonance Bravo et al. 2011 Spillane et al. 2007 Influence runaway conditions: LER -simmering T (if central) off-center ignition Conv. Cores 12 C burnt Y e (α/p) 12 C + 12 C 23 Na + p 12 C + 12 C 20 Ne + α vs CF88
24
Dust formation in the ejecta of SNIa ? Nozawa et al. 2011 Kepler & Tycho SNR Gómez et al. 2012 400 yrs Dust observed (Herschel): M w,d 3 – 8 10 -3 M Early (100 d) formation: 3 10 -4 to 0.2 M / SNIa Destruction (10 6 yr)
25
Dust in Type Ia Supernova Remnants Poor producers of interstellar dust !! NO clear detection yet ! Gómez et al. 2012 Tycho SNR Dust (contours) is coincident with the outermost shockfront swept up ISM or CSM X-rays Chandra Williams et al. 2012 Dust from progenitor system !! Kepler CSM Silicate dust Spitzer Kepler SNR: Massive AGB companion ? (N/N > 2) Chiotellis et al. 2012 Williams et al. 2012
26
Tycho SNR (1572) NASA/SAO/JPL-CAHA Grazie Mille !!
27
Observations X, UV, optical, IR Hsiao et al. 2007, 2012 2001el Krisciunas Hsiao et al 2012 Fe-peak: late IR X-ray (SNR) Z progenitor: very early U-band IME: Early Optical spectra IR spectra, X-ray (SNR) Unburnt Carbon: NIR spectra
28
SN2011fe in M101 at 6.4 Mpc 56 Ni & 56 Co: - ray no detection yet ! upper limits SN2011fe: INTEGRAL observations 975419 s Isern et al. 2012 Dust: MIR & FIR Kepler SNR Gómez et al. 2012 Herschel
29
Proposed 1D Explosion Mechanisms DET: pure C-detonation DEF: pure deflagration but … DDT: delayed detonations DEF DET PDDT: pulsating delayed detonation Sub-Ch: He-detonation in outer layers shock inward C-O detonation Super-Chandrasekhar (rotation) 0.8 M CO 0.2 M He few
30
From progenitors to LCs M ch R ~ 2 10 8 cm c ~ 2 10 9 g/cm 3 CO WD < 8M < 1.1M accretion T & rise at center Non explosive C-ignition Convection (simmering) Explosive C-ignition 1.5 M : 2.2 Gyr 7 M : 0.04 Gyr Cooling Gyr LC: 56 Ni 56 Co 56 Fe IME (O, Ca, Mg, Si, S) E nuc > E nuc < hyd Propagation of burning: IME burning at < 2 10 7 g/cm 3 Pre-expansion of the WD Delayed Detonations (1D) Key parameter: DDT ? 3D ? C-expl
31
Z = 0.1 Z Z = 3 Z ZZ Z: Calibration depends on Z !! Z ( ) L max 0.5 mag WD Age: cooling/crystallization 12 C L max 0.4 mag t > 1.25 Gyr Dependence of the transition density on composition ? Chamulak et al. 2007 Calibration relation vs Z ApJL Bravo et al. 2010, A&A 2011 SDSS in agreement with observations Sullivan et al. 2010
32
Influence of Z Bravo et al. 2010, Domínguez et al. 2001 56 Ni vs Z Timmes et al. 2003 ZZ DDT ( 12 C, ) 3Z ZZ M MS : 3 – 7 M Z ini : 10 -10 – 0.1 Including simmering : more e-captures DDT fixed Neutronization Z 56 Ni L 56 Ni Mass & Distribution Further Neutronization: Simmering: e-cap. Slow deflagration: e-capt. Initial Z 22 Ne
33
Our Studies about the influence of Progenitors Evolution Explosion (1D) of the WD Light Curve Initial Mass Initial chemical composition c (WD cooling, accretion) Rotation (M T U bin ig ) M MAX < 0.2 mag Domínguez et al. ApJ 2001, ApJ 2006, Bravo et al. 2010 The Majority of SNe Ia Standard Bombs Good lighthouses !! OK for To progress further Nature of Dark Energy Precision x 10 CONTROL ALL SYSTEMATIC
34
Numerical Methods STELLAR EVOLUTION & Accretion phase FRANEC (Chieffi, Domínguez, Imbriani, Limongi, Straniero) 1D Hydrostatic Code EXPLOSION & LIGHT CURVES 1D Radiation-Hydrodynamic Code (PPM) (Höflich, Khokhlov) Ray transport Monte Carlo 3D simulations velocity of deflagration Extended Nuclear Network Extended Nuclear Network (700 isotopes) Physics and Chemestry coupled Time dependent mixing (Domínguez, Höflich) PMS WD Accretion Explosive C-ignition
35
Light Curves Models M MS 1.5 7 M L WD Progenitors Z 0 0.02 M MAX < 0.05 Z (B-V) < 0.07 Extinction M MAX < 0.2 mag 14 % in 56 Ni mass Domínguez, Hoflich, Straniero 2001
36
SNe luminosities vs host galaxies Sullivan et al. 2010 After Correction !!! Low sSFR High M stellar (High Z) Brighter by 0.06-0.09 mag brighter dimmer M ste sSFR brighter dimmer
37
Information about the explosions from Hubble residuals ? HR = a + Z = 0.13 = 0.22 Simulations: 200 SNe M 56Ni = 1. - 0.075 Z/Z M 56Ni = 1. - 0.18 Z/Z (1. - 0.1 Z/Z ) Bravo et al. 2010 Gallagher et al. 2008 Howell et al 2009 !! observed
38
Urgent work is demanded on... Progenitors Observations/Theory Galactic chemical enrichment (Fe-peak) 3D Explosions free of parameters Dust Extinction Different from Milky Way Evolution with z IR Hubble Diagrams SN properties/Galaxy Properties (Age, Z, SFR) Large Subsamples with smaller scatter split by properties Hubble diagrams including only passive galaxies LCs & spectra from early time, including IR More Correlations: SN properties (spectra, colors...)/LC shape and Max Go to higher z
39
Joint Dark Energy Mission – NASA + DOE Ground Based Telescopes - Working Bright SNe Survey -CFHT Legacy Survey- Carniege SN Program - ESSENCE- Nearby SNe Factory- Nearby Galaxies SN Search - SN Intensive Study... Near future Pan-STARRS, La Silla SN-search, Skymapper, Palomar Transiente Factory... and more from Space under study SNIa up to z=4 Supernovae CMB Dark Matter BBN
40
Further information… Supernova Cosmology Project http://www-supernova.lbl.gov/ The High-Z SN Search http://www.cfa.harvard.edu/supernova//HighZ.html JDEM-Joint Dark Energy Mission (NASA-DOE) http://jdem.gsfc.nasa.gov/ Dark Cosmology Center at Niels Bohr Institute http://dark.nbi.ku.dk/
41
Peculiar SNe Ia !! Li et al 2003 Obseved V exp extremely low CaII 6000 km/s broad peak SN 2002cx Subluminous M B =-17.7 m 15 =1.29 Outside the calibration Identification ? Associated with Star Formation More at high z !! 2001ay 2002cx 2002ic 2003fg from z=0 to 1.5 SFR x 10 Peculiar SNIa x 10 2002cx
42
Influence of the Progenitor DD Systems Including ROTATION Steady Accretion Balance between Angular Momentum deposition and Angular Momentum lost by GWR M > M Ch Braking and Explosion Piersanti, Gagliardi, Iben & Tornambé 2003 WD rotation synchronized at the orbital frequency Rotation determines the decrease of the accretion rate and, hence, it prevents the off-center C-ignition
43
SN 2003fg: Super-Chandrasekhar ?? z=0.24 Brighter by x 2.2 Normal Spectra !! Lower expansion velocities 1.3 M of 56 Ni Progenitor: 2 M WD Differential Rotation Outside Maximum-decline relation !!!! 0.67 mag brighter Howell et al. Nature 2006 SNLS Team, CFHT L (erg/s) M Ni
44
DD Rotating models: LCs Domínguez et al 2006 56 Ni: 0.77 0.86 M M bol : -19.5 -19.6 ig 46%U bin 22% Rigid rotation M < 1.5M Ellipticals Spirals Piersanti et al 2009 Distribution of merging events If More Massive brighter OK Luminosity distribution OK SN Rates Differential Rotation M < 2.2 M work in progress !!
45
Looking for the companion... Supernova Progenitor Survey -ESO-SPY consortium DD: WD + WD FEW Napiwotzki et al. 2006 Precursors: Recurrent Novae RS Oph M WD ~ 1.38 M Hachisu et al. 2006, Selvelli et al. 2003, Sokoloski et al. Nature 2006 X-ray progenitor observations : SN2007on in NGC1404 (E) 4 yr before Direct hints from the companion ?? SD: WD + MS/RG/AGB Tycho SNR: companion detected (v) Ruiz-Lapuente et al. 2004 Nature - Spectroscopy: No Fe Ihara et al. 2007 + [Ni/Fe] = 0.16 Hernández, Ruiz-Lapuente et al. 2009 Interaction with the CSM (previous mass loss: SD vs DD) + 2002ic H !! Hamuy et al. 2003 Nature SD/DD + 2006X Patat et al. 2007 Science SD - 27 SNIa NO Radio (VLT) Panagia et al. 2006 NO SD - 2005am 2005cf, No H in nebular spectra Leonard 2007 NO SD Historical SN remnants : Z of the progenitors, explosion etc. Badenes 2008-09 Sprectropolarimetry: asphericals ? disk ? SN 2001el Lifan et al. 2003
46
SNe Ia alone m ~ 0.7 ~ 1.3 Clocchiatti et al. 2006 m ~ 0.8 ~ 1.6
47
Super-Chandrasekhar SN2007if Scalzo et al. 2010 2003fg -20.18 0.94 2006gz -19.29 0.69 2007if -20.54 0.71 2009dc -20.09 0.65 MBMB m 15 M WD ~ 2.4 M M Ni ~ 1.6 M
48
Sub-Chandrasekhar Sim et al. 2010 Observations: Hicken et al. 2009 1.15 1.06 0.97 0.88 WD (M ) Shen et al. 2010 Rise time: 2-10 days Spectra: CaII TiII (from He-DET)
49
He-Detonatios Science, Poznanski et al. 2010 Bildsten et al. 2007
50
Influence of Z Bravo, Domínguez, Badenes, Piersanti, Straniero 2010 Z = 0.1 Z Z = 3Z ZZ L MAX – width vs Z Observations (M Bol ) Contardo et al. 2000, Phillips et al 2006 Stanishev et al. 2007, Wang et al. 2009 DDT ( 12 C, ) Assuming: Different calibration for different Z for given m 15 : Z dimmer SNe 0.5 mag agreement with observations Sullivan et al. 2010 Z (B-V) < 0.07 Extinction Effect on colours at MAX Domínguez et al. 2001 Hoflich et al. 1998
52
SNIa Hubble Diagrams Expected (before 1998) Dimmer further Back in time Relative Distances i = i / cr critical density ~ 6 H per m 3
53
12 years: evidence of stronger m ~ 0.3 ~ 0.7 400 SNe Ia Observations of SNe Ia alone > 0 at 99% CL SNe Ia + Flat Universe (CMB)
54
Parameterizing SNe Ia by the Shape of their Light Curve M. Phillips (1993) & M. Hamuy et al. (1996 ) MBMB ~ 0.2 mag M max - m 15 LOCAL calibration Valid at High-z ?
55
Light Curves LCs Radioactive energy Leibundgut 2003 56 Ni 56 Co 56 Fe 1/2 : 6.1 d 77.7 d escape 56 Ni 0.4M 1.4M
56
Radioactive Energy: Light Curves UBVRI M bol 56 Ni -20 1.1 M -17 0.1 M To 1st order… Maximum Lmax 56 Ni mass 56 Ni 56 Co 56 Fe LC Shape E K = E nuc - E bin T 56 Ni Distribution Contardo, Leibundgut, Vacca, 2001
57
Explosion mechanisms DET: pure C-detonation DEF: pure deflagration DDT: delayed detonations DEF DET PDDT: pulsating delayed detonation: slow DEF Sub-Ch: He-detonation in outer layers shock inward C-O detonation Super-Ch (rotation) 0.8 M CO 0.2 M He tr
58
EXPLOSIONS 1. Ignition in 1 or several spots ? 2. Runaway... Explosive ignition 3. Propagation of the burning front E nuc > E nuc < hyd Laminar (conductive e - ) v << Deflagrations v < v sound Detonations v v sound
59
Influence of M MS & Z Bravo et al. 2010, Domínguez et al. 2001 56 Ni vs Z Timmes et al. 2003 ZZ DDT ( 12 C, ) dimmer Z 3Z ZZ M MS : 3 – 7 M Z ini : 10 -10 – 0.1 Including simmering : more e-captures 56 Ni L M MS L max tr fixed Z ( ) L max
60
Nucleosynthesis & Light Curves UBVRI M bol 56 Ni -20 1.1 M tr: M max -17 0.1 M M max - m 15 56 Ni Mass & Distribution Contardo, Leibundgut, Vacca, 2001 Neutronization : Hoflich, Khokhlov 1996 tr shorter pre-expansion burn 56 Ni IME (Ca, S, Si, Mg) Stellar evolution: Z 22 Ne Simmering: e-cap. Slow deflagration: e-capt. 56 Ni
61
Explosive Nucleosynthesis Baron et al. 2012 Mass fraction - velocity ( )
62
Piersanti et al. 2003a,b acc < cond 10 -5 M /yr 10 -6 M /yr 10 -7 M /yr 10 -8 M /yr ONe WD SNIa acc > cond > 10 -6 M /yr < 10 -6 M /yr CO over CO
63
Observations Sullivan el al. 2009 Contreras et al. 2010 Hsiao et al. 2007, 2012 UV, optical, IR
64
Distance indicators Cosmology Nucleosynthesis Origin and evoution of the elements Physics Laboratories: hydrodynamics, combustion, radiation transport, nuclear physics, high-energy physics… Numerical simulations testing capabilities of computers Identify 2nd parameters for the calibration Does the Calibration depend on redshift ? Improve the Local Calibration ? Understand SNe Ia !!
65
Nuclear Energy © Rolfs & Rodney 1988 BE/A C-burning O-burning Si-burning NSE Explosive burning in SNIa: Fuel is C-O:
66
Nuclear burning-scales SNe explosion-scales Specific heat C of degenerate matter decreases when increases T increases when increases C < O < Si < NSE X C < X O < X Si < X NSE o < 2 10 7 g/cm 3 No NSE o < 5 10 6 g/cm 3 No Si-burn o < 10 6 g/cm 3 No O-burn R WD Burning nucleosynthesis Resolution: at c cm !
67
Explosion: Propagation of the burning front Laminar (conductive e - ) spontaneous grad T C/O v cond (v l ) ~ 0.01 v sound Detonations shock Hyd. eq. + E nuc v DET v sound Deflagrations turbulent mixing burn-unburnt Rayleigh-Taylor instability 3D problem in 1D v DEF parametrized v DEF < v sound ( 0.03 v sound )
68
Deflagration Rayleigh-Taylor instability 3D problem in 1D v DEF parametrized
69
Observed Mass Distribution of WDs few WDs 1.1 M Samples Weidemann 2000 Bergeron, Green, Liebert, Saffer Vennes … & SDSS Segretain et al 97 0.6 M ONe WDs or Mergers 298 DA WDs PG Survey Liebert et al. 2005
70
Any Path to the Chandrasekhar Mass ?? RG MS CO Accretion (DD) GWR H/He accretion (SD) 10 -5 M /yr Piersanti & Tornambe
71
3D Pulsating Reverse Explosions Models Bravo & García-Senz ApJL2006 Bravo & García-Senz ApJ 2009 Bravo, García-Senz, Cabezon & Dominguez ApJ 2009 SPH PRD: Mass of the Hydrostatic core 56 Ni mass E k E k = 1.0 – 1.2 foe 56 Ni = 0.6 – 0.8 M M burnt = 1.1 – 1.2 M IME = 0.2 M C < 0.13 M at low v < 0.08 M Chemical composition
72
Explosion & Energy WD binding energy 5-6 10 50 erg (~ 0.4 M ) Fuel C & O Fe/Co/Ni > 10 7 g/cm 3 S/Si > 5 10 6 g/cm 3 Mg/O/Ne > 10 5 g/cm 3 Observations unburnt C < 0.01 – 0.2 M Nearly all M Ch WD is burnt Similar E k ~ 2 10 51 erg (in ~ 1 s) Similar E Nuc Magic density ~ 10 7 g/cm 3
73
Nucleosynthesis & Kinetic Energy E K ~ 1.4 foe 1 foe = 10 51 erg v exp ~ 10000 km/s as observed !! Homologous expansion V r r C/O > 20000 km/s IME < 20000 km/s Fe-peak < 10000 km/s 54 Fe, 58 Ni < 2000 km/s neutronized elements Hole of 56 Ni in the center Chemical layered … as observed ! V r = cte. 0.6 M 56 Ni E rad ~ 0.03 E K
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.