Download presentation
Presentation is loading. Please wait.
Published byZoe Barnett Modified over 9 years ago
1
Equilibration of non-extensive systems T. S. Bíró and G. Purcsel MTA KFKI RMKI Budapest NEBE parton cascade Zeroth law for non-extensive rules Common distribution Extracting temperatures Talk given at Varos Rab, Croatia, Aug.31-Sept.3 2007
2
Thermodynamics Boltzmann – Gibbs: Extensive S(E,V,N) 0: an absolute temperature exists 1: energy is conserved 2: entropy does not decrease spontan. Tsallis and similar: non-extensive 0: ??? 1: (quasi) energy is conserved 2: entropy does not decrease
3
NEBE parton cascade Boltzmann equation: Special case: E=|p|
4
Energy composition rule Associative rule mapping to addition: quasi-energy Taylor expansion for small x,y and h
5
Stationary distribution in NEBE Gibbs of the additive quasi-energy = Tsallis of energy Boltzmann-Gibbs in X(E) Generic rule Quasi-energy Tsallis distribution
6
Abilities of NEBE Tsallis distribution from any initial distribution Extensiv (Boltzmann-) entropy Particle collisions in 1, 2 or 3 dimensions Arbitrary free dispersion relation Pairing (hadronization) option Subsystem indexing Conserved N, X( E ) and P
7
Boltzmann: energy equilibration
8
Tsallis: energy equilibration
9
Boltzmann: distribution equilibration
10
Tsallis: distribution equilibration
11
Mixed: distribution equilibration
13
Thermodynamics: general case If LHS = RHS thermal equilibrium, if same function: universal temperature
14
Thermodynamics: normal case If LHS = RHS thermal equilibrium, if same function: universal temperature
15
Thermodynamics: NEBE case If LHS = RHS thermal equilibrium, if same function: universal temperature
16
Thermodynamics: Tsallis case If LHS = RHS thermal equilibrium, if same function: universal temperature Tsallis entropy: S(E1,E2) = S1 + S2 + (q-1) S1 S2; Y(S) additiv, Rényi
17
Thermodynamics: NEBE case = 1 / T in NEBE; the inverse log. slope is linear in the energy
18
Boltzmann: temperature equilibration T = 0.50 GeV T = 0.32 GeV T = 0.14 GeV
19
Tsallis: temperature equilibration T=0.16 GeV, q=1.3054 T=0.08 GeV, q=1.1648 T=0.12 GeV, q=1.2388
20
Summary NEBE equilibrates non-extensive subsystems It is thermodynamically consistent There exists a universal temperature Not universal but equilibrates: different T and a systems (not different T and q systems: Nauenberg)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.