Download presentation
Presentation is loading. Please wait.
Published byGodfrey Andrews Modified over 9 years ago
1
Final Exam Review (Day 1)
2
Energy Lecture Review Kinetic & Potential Energy Net Work (W net = F net x = F net cos ) Work-Kinetic Energy Theorem (W = KE) Conservation of Energy (KE i + PE i = KE f + PE f ) Problem Review (Group Problems) Energy Net Forces
3
Potential Energy Stored Energy In Which An Object May Use To Perform Work On Another Object Gravitational Potential (PE = mgh) Elastic Potential (PE = ½ kx 2 ) Chemical Potential (PE = nC v T) Kinetic Energy Energy Achieved By An Object In Motion Kinetic Energy (KE = ½ mv 2 )
4
Work Done On An Object With Multiple Forces Is The Net Work For A Net Force Applied At An Angle, The Net Work Is The Product Of The Component Of Force In The Direction Of Motion & Its Displacement W net = F net x = F net cos
5
Work Done On (Net External Force) An Object Results In A Change In The Object’s Kinetic Energy Work = Force x Displacement or W = F x Work-KE Theorem Is Equivelent To The Following Expression: W = KE f – KE i = ½ mv f 2 – ½ mv i 2
6
Total Mechanical Energy (ME = KE + PE) Of An Object Remains Constant As The Object Moves Assume No Net Work Done By External Forces (e.g. Friction, Air Resistance, Pressure, etc.) ME i = ME f KE i + PE i = KE f + PE f
7
The Drawing Shows A Boat Being Pulled By Two Locomotives Through A Canal Of Length 2.00 km. The Tension In Each Cable Is 5.00 x 10 3 N, And = 20.0 o. What Is The Net Work Done On The Boat By The Two Locomotives?
8
A 0.075 kg Arrow Is Fired Horizontally. The Bowstring Exerts An Average Force Of 65 N On The Arrow Over A Distance Of 0.90 m. With What Speed Does The Arrow Leave The Bow?
9
A Cyclist Approaches The Bottom Of A gradual Hill AT A Speed Of 11 m/s. The Hill Is 5.0 m High, And The Cyclist Estimates That She Is Going Fast Enough To Coast Up And Over It Without Peddling. Ignoring Air Resistance And Friction, Find The Speed AT Which The Cyclist Crests The Hill.
10
Final Exam Review (Day 2)
11
Momentum Lecture Review Impulse (I = F net t = p = p f – p i ) Conservation Of Momentum (P i = P f ) Collisions (Elastic & Inelastic) Circular Motion (a c = v t 2 /R) Gravitation (F g = Gm 1 m 2 /d 2 ) Problem Review (Group Problems) Momentum Collisions Circular Motion
12
When A Large Force Acts on An Object For A Sufficient Amount Of Time, Their Product Is The Impulse Of The Force I = F net t The Object Will Thusly Experience A Change In Velocity (Or Change In Momentum) As Shown From Newton’s 2 nd Law: I = F net t = p = p f – p i
13
The Total Linear Momentum Of An Isolated System Remains Constant An Isolated System Is One For Which The Vector Sum Of The External Forces Acting On The System Is Zero P i = P f mv 1i + mv 2i = mv 1f + mv 2f
14
Elastic Collision Is One In Which The Total KE Of The System After The Collision Is Equal To The Total KE Before The Collision Inelastic Collision Is One In Which The Total KE Of The System After The Collision Is Not Equal To The Total KE Before The Collision
15
Uniform Circular Motion Is The Motion Of An Object Traveling At A Constant (Uniform) Speed On A Circular Path Even Though An Object In Circular Motion Has A Constant Velocity (VT) It Experiences An Acceleration Toward The Center Of The Circular Path a c = v t 2 /R
16
Objects With Mass Are Seemingly Attracted To Each Other Through The Gravitational Force F g = Gm 1 m 2 /d 2 G Is The Gravitational Constant And Has An Experimentally Determined Value of: G = 6.67 x 10 -11 Nm/kg 2
17
During A Storm, Rain Comes Straight Down With A Velocity Of v o = -15 m/s And Comes To Rest After Impacting The Car. If The Rain Drops Have A Mass Of 0.060 kg & It Takes 1.0s To Come To A Rest, What Is The Force Exerted By The Rain On The Car Roof? If Hail Fell Instead Of Rain, Would The Force On The Roof Be Smaller Than, Equal To, Or Greater Than That Of The Raindrop?
18
A Ball Of Mass m 1 = 0.250 kg And Velocity v 1i = +5.0 m/s Collides Head-on With A Ball Of Mass m 2 = 0.800 kg That Is Initially At Rest. No External Forces Act On The Balls. If The Collision Is Elastic, What Are The Velocities Of The Balls After The Collision?
19
How Long Does It Take A Plane, Traveling At A Constant Speed Of 110 m/s, To Fly Once Around A Circle Whose Radius Is 2850 m?
20
Final Exam Review (Day 3)
21
Kinematics Lecture Review Displacement, Velocity & Acceleration Speed Versus Velocity Graphical Models Of Motion Kinematic Equations Freefall 2-D Kinematics Horizontal Projectile Motion Projectile Motion @ Angle Problem Review (Group Problems) 1-D Kinematics 2-D Kinematics
22
Displacement Is A Vector That Points From An Object’s Initial Position Toward Its Final Position (Shortest Distance Between Two Points) x = x f - x i Velocity Is Defined As The Displacement (Change In Position) Of An Object Divided By The Change In Time v = x/ t Acceleration Is The Change In Velocity Of An Object Over The Change In Time a = v/ t
23
What Is Speed? Speed Is An Average Velocity If I Asked How Fast You Drove From Home To School Today What Would You Say? What About Velocity Then? Velocity Is Instantaneous, It Changes From One Second To The Next Watch Your Speedometer Next Time You’re Driving!
24
Position Versus Time ( x versus t) Velocity Versus Time ( v versus t) Slope = x/ t = Velocity Slope = v/ t = Acceleration tt tt xx vv
25
Kinematics is the study of objects’ motion at constant acceleration There are 4 kinematic equations Use these to solve all 1-D and 2-D motion problems!
26
EquationFormulaRelationship #1Velocity to Time #2Displacement to Time #3Velocity to Displacement #4Average Velocity
27
Freefalling Bodies Move Freely Under The Influence Of Gravity ONLY! The Acceleration Of An Object In Freefall Is ALWAYS The Acceleration Of Gravity a g = -9.81 m/s 2 Use Kinematic Equations To Solve Freefall Problems What Is The Acceleration Of An Object Thrown Upwards? What Is The Velocity Of An Object At The Peak Of Its Motion? FREEFALL
28
Projectile Motion Horizontal Projectile Motion Projectile Motion At An Angle Problem Solving Method First Commandment Of Physics (Keep X & Y Directions Separate) Solve For Time In Y-Direction Using A Kinematic Equation Use V ix = x/ t In The X-Direction
29
What Is The Acceleration At The Following Points: a). 0 to 5 s b). 5 to 15 s c). 15 to 20 s
30
A Baseball Player Hits A Triple And Ends Up On Third Base. A Baseball “Diamond” Is A Square, Each Side Of Length 27.4 m. What is The Magnitude Of His Displacement? If The Same Baseball Player Rounds 2 nd Base With A Velocity Of 10 m/s & Slides To A Stop At 3 rd Base, What Is His Deceleration From 2 nd To 3 rd ?
31
A Quarterback Throws A Pass To A Receiver, Who Catches It At The Same Height As The Pass Is Thrown. The Initial Velocity Of The Ball Is 15.0 m/s, At An Angle Of 25.0 o Above The Horizontal. What Is The Horizontal Component Of The Ball’s Velocity When The Receiver Catches It?
32
PROBLEM #4: 2-D KINEMATICS Given The Last Problem, How Far Did The Receiver Have To Run Before Making The Catch?
33
Final Exam Review (Day 4)
34
Dynamics Lecture Review Force Types (4 Major Forces) Newton’s Laws Of Motion 1 st Law (Freebody Diagrams) 2 nd Law ( F = F net = ma) 3 rd Law (F 12 = -F 21 ) Problem Review (Group Problems) Net Force Newton’s Second Law I Newton’s Second Law II
35
An Object With Mass (Takes Up Space) In The Presence Of Gravity Has Weight. W = mg Any Object In Contact With A Surface Experiences A Force Normal To The Surface Called The Normal Force (F N ) An Applied Force (Mechanical or Electrical) Is One That Is Applied To An Object Causing It To Move (F A ) The Resistive Force Acting On An Object In Contact With Another Surface Is The Force Due To Friction Static Friction (F s = s F N ) Kinetic Friction (F k = k F N )
36
FkFk W FNFN
37
Draw The Freebody (The Object Separated From Its Surroundings) Draw Relevant Forces Acting On The Freebody From The Center Of The Object Does The Body Have Mass In The Presence Of Gravity? Is The Object In Contact With A Surface? If Yes, Is The Contact Surface Frictionless or Is Friction Present? Is There An Applied Force?
38
Second Law: The Net Force (F net = F) Acting On An Object Will Cause The Object To Accelerate (Motion) F = ma Add Forces In Different Directions Vectorally F net 2 = F x 2 + F y 2 (Magnitude) Tan ( ) = F y /F x ( Direction )
39
First Law An Object In Motion Will Stay In Motion Until Acted Upon By An External Net Force An Object At Rest Will Remain At Rest Until Acted Upon By An External Net Force Third Law Two Objects In Contact Will Apply Forces Equal In Magnitude But Opposite In Direction F 12 = -F 21
40
A Person With A Blackbelt In Karate Has A Fist That Has A Mass Of 0.70 kg. Starting From Rest, This Fist Attains A Velocity Of 8.0 m/s In 0.15 s. What Is The Magnitude Of The Average Net Force Applied To The Fist To Achieve This Level Of Performance?
41
Two Forces, F 1 & F 2, Act On The 5.0 kg Block Shown In The Drawing. The Magnitudes Of The Forces Are F 1 = 45.0 N And F 2 = 25.0 N. What Is The Horizontal Acceleration (Magnitude & Direction) Of The Block?
42
A 92 kg Baseball Player Slides Into Second Base. The Coefficient Of Kinetic Friction Between The Player And The Ground Is k = 0.61. a). What Is The Magnitude Of The Frictional Force? b). If The Player Comes To Rest After 1.2 s, What Is His Initial Speed?
43
Given The Following Atwood Machine With Masses M and m, Determine The Acceleration Of Mass m. m m
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.