Download presentation
Presentation is loading. Please wait.
Published byConrad Harris Modified over 9 years ago
1
"Equipment Selection and Data Delivery Protocols for Permanent Flow Monitoring: A Case Study" Presented By: Keith Laguaite and Greg Anderson (McKim & Creed)
2
ABSTRACT As part of an environmental consent order, a South East city was required to enhance its wastewater transmission monitoring and reporting capabilities. With no current system in place the need to evaluate and select appropriate monitoring equipment, data delivery protocols and reporting platforms was necessary. McKim & Creed evaluated various types of open channel and side pressure flow metering equipment, power requirements for the equipment and the necessary communication devices for 7 major pump stations, 7 primary outfalls, 4 regional rain gauges and several temporary overflow sensing apparatus’. Based on the evaluation, a report was prepared that served as a guide for subsequent development of construction documents and cost estimates in implementing needed improvements. This presentation discusses the evaluation process utilized for equipment selection and the data delivery protocols that were developed to allow for common acquisition processes using both an internal SCADA system and a telemetry-based platform that can be monitored remotely by outside city agencies.
3
PROJECT SUMMARY Scope - Develop a Permanent Wastewater Flow Monitoring and Rainfall Gauging Solution Tasks: 1. Determine Necessary Flow Monitoring Locations 2. Complete Testing of Applicable Monitoring Equipment 3. Recommend an RTU Based Monitoring Platform 4. Evaluate and Recommend Adequate Power System 5. Prepare Procurement Construction/Installation Cost Opinions 6. Submit Formal Technical Memorandum
4
DETERMINE NECESSARY MONITORING LOCATIONS (Gravity Sewers & Lift Stations) Major Basins: Major Lift Stations: WPCP: 1. Rock Creek1. Chaffee James B. Messerly 2. Raes Creek2. 2nd Street Spirit Creek 3. Mid City 3. Butler Creek 4. Glass Factory4. Apple Valley 5. Rocky Creek5. Spirit Creek 6. Butler Creek6. Goshen 7. Spirit Creek7. Arcadian
5
DETERMINE NECESSARY MONITORING LOCATIONS (Gravity Sewers & Lift Stations)
6
TESTING OF MONITORING EQUIPMENT Evaluation of Open Channel Flow Monitoring Equipment 1. FloWav Submerged Pressure/Wave Doppler Sensor
7
TESTING OF MONITORING EQUIPMENT Evaluation of Open Channel Flow Monitoring Equipment 1. ISCO – LaserFlow Model 2160
8
TESTING OF MONITORING EQUIPMENT Evaluation of Open Channel Flow Monitoring Equipment 1. Eastech – Accuron 7500
9
TESTING OF MONITORING EQUIPMENT Evaluation of Open Channel Flow Monitoring Equipment 1. All open channel flow meters were tested at the same location (Mid-City Site) 2. 52 - Inch Ductile Iron Pipe 3. 6 – Foot Diameter Manhole 4. Flow Depth Ranged from 20 - Inches to 48 – Inches 5. 2 – Inches of Debris 6. Average Velocity 1.9 FPS
10
TESTING OF MONITORING EQUIPMENT Evaluation of Open Channel Flow Monitoring Equipment 1. All Equipment Performed within Manufacturer’s Specifications 2. FloWav Sensor and Accuron Sensors Required Debris Removal 3. Laser Flow Required No Maintenance 4. All Equipment Communicates with Multiple Monitoring Platforms
11
TESTING OF MONITORING EQUIPMENT Evaluation of Open Channel Flow Monitoring Equipment 1. The Laser Flow was the Most Expensive of the Equipment Evaluated - $14,000 Each w/out RTU 2. The FloWav was the Least Expensive - $2,500 w/out RTU 3. The Eastech Accurron Required the Most Maintenance 4. The FloWav was the Simplest to Install The LaserFlow was Recommended for 6 Sites and the FloWav was recommended for 1 of the Sites as the System Hydraulics an Pipe Size (18”) was not Conducive to Gaining Quality Data with the Laserflow
12
TESTING OF THE MONITORING EQUIPMENT Evaluation of Pressure Piping Monitoring Equipment 1. The Client Desired to Utilize Permanent Mag Meters for all Pressure Pipe Monitoring, However, They were also Interested in Testing a Clamp-on Style Transit Time Meter 2. The Fuji Transit Time ‘C’ Meter was Tested as Part of the Evaluation
13
TESTING OF THE MONITORING EQUIPMENT Evaluation of Pressure Piping Monitoring Equipment 1. The measuring principle is based on sending ultrasonic pulses propagated diagonally between an upstream and downstream sensor and then calculating the velocity based on the time differential that the signal takes in the process 2. The instantaneous readings are taken every tenth of a second and the sensors are capable of a measurement range of between -1 and 100 feet per second. 3. Prior to installation of the sensors, the discharge force main is inspected to determine pipe diameter, material, wall thickness and existence of any lining/coating materials.
14
TESTING OF THE MONITORING EQUIPMENT Evaluation of Pressure Piping Monitoring Equipment 1. The Fuji Meter Performed Well and Within the Specified Tolerances all Installations Would Require Construction of a Separate Valve Vault to Maintain the Necessary Straight Line/Uninterrupted Distance 2. The Client Decided to Utilize a Clamp-on Style Meter, However, Selected the Flexium TS-Fluxus Meter Versus the Fuji Transit Time ‘C’ Due to Availability of the equipment
15
MONITORING PLATFORM EVALUATION Existing Monitoring Systems 1. The Client Currently Owns and Operates Telog Based Rainfall Gauging and Overflow Monitoring Devices 2. The Rainfall Gauges Utilize Telog RG-32 RTU 3. The Overflow Sensors Utilize Telog RU-32 RTU 4. Telog Hosts the Data Remotely on a Server at Their Manufacturing Facility in New York 5. The Client is Able to Access the Data Remotely via Telog’s Enterprise Software Web Browser Application
16
MONITORING PLATFORM EVALUATION Proposed Monitoring System Additions 1. The Proposed Flow Monitoring (Open Channel/Pressure) Meters will Utilize Telog RTUs 2. Each Clamp-On Meter will Utilize a RU-32 RTU 3. Each Open Channel Flow Meter will Utilize a Telog RS- 33u RTU 4. All Data will be Stored Remotely by Telog 5. The Client will Continue to Access the Data Remotely via Telog’s Enterprise Software Web Browser Application
17
MONITORING PLATFORM EVALUATION RU-32 RTU Clamp-On Meter Operation Description 1. Pressure Pipe Flow Monitoring will be Accomplished using the Telog RU-32 2. The Ru-32 is similar in operation as the RG-32 as it uses a low power machine to machine (m2m) cellular modem 3. The modem, data recorder, battery and antennae are integrated into a single enclosure
18
MONITORING PLATFORM EVALUATION RU-32 RTU Overflow Sensor Operation Description 1. The ultrasonic level sensor records wastewater levels within the manhole where the equipment is deployed and the float switch triggers an emergency call that indicates that the wastewater in the manhole is in jeopardy of overflowing 2. Level data can be recorded in fifteen, five, or one minute intervals 3. The recorder can successfully store 80,000 data points before the information is over written and battery life is approximately 5 years
19
MONITORING PLATFORM EVALUATION RG-32 RTU Rainfall Gauge Operation Description 1. The gauge has an internal leveling device to ensure that the collected rainfall is evenly distributed to each bucket 2. Each bucket holds one hundredth of an inch of rainfall as the bucket becomes full it tips due to gravity and discharges the collected rainwater to a drain in the bottom of the canister 3. Each tip sends a pulse to the RG-32 which records the tip as one hundredth of an inch
20
MONITORING PLATFORM EVALUATION RS-33u RTU Rainfall Gauge Operation Description 1. The RS-33u was selected as it has the capability to record and transfer level, velocity and flow data via cellular service, or 4-20 mA to any SCADA PLC. 2. The RS-33u can also support additional sensors, including ultra-sonic level and various water quality sondes
21
POWER REQUIREMENTS EVALUATION 1. Each Pressure Pipe Monitoring Device will be Powered by 110 AC from Adjacent Lift Station 2. Each RG-32 and RU-32 will be Powered by ‘D’ Cell Batteries 3. Each RS-33u will be Powered by Solar Irradiance (It was estimated that each meter/RTU will require less than 1 amp @ 12 volts DC each day)
22
PROJECT SUMMARY The Proposed Permanent Wastewater Flow Monitoring System is Intended to Provide the Following: 1. A Method for Monitoring Wastewater Flow at Each of the Client’s Primary Outfalls/Discharges 2. Provision of a Monitoring System that is Both Reliable and Easy to Operate/Maintain 3. Establishment of a Metering/Monitoring Platform that Includes a Future SCADA Interface as well as the Ability to Monitor/Measure/Evaluate Other Water/Wastewater Stream Attributes.
23
Contact Information: Greg Anderson, PE ganderson@mckimcreed.com 757.435.7363
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.