Download presentation
Presentation is loading. Please wait.
Published byRalf Burns Modified over 9 years ago
1
8.3, Pages 687-8 #25-34,51-62 25) a) -4, 16b) -12, 0 c) 8, -8 26) a) -4, -8b) 12, 0 c) -4, 4 27) a) 8,0b) 0, 16 c) -4, -8 28) a) 4,0b) -12, 8 c) 4,4 29) a) 0, 12b) -16, -4 c) 8, -4 30) a) 4,4b) 12, -12 c) -8, 4 31) a) 3, 2b) -3, 2 32) a) -1, 4b) 3, -2 33) a) 3i-jb) i+3j 34)a) –i+5jb) 3i-J 51) a) 1 b) 89.1 c) N 52) a) 18 b) 6.3c) N 53) a) 0 b) 180c) perp. 54) a) -10 b) 0 c) parallel, opposite directions 55) a) 122 b)0 c)parallel, same direction 56) a) 0 b) 90 c) perp. 57) a) -4 b) 143.1 c) N 58) a) 100 b) 0c) parallel, same dir 59) 150 ft-lb 60) 120 ft-lb 61) 100,000 ft-lb 62) 7500 ft-lb
2
8.4 Page 699 #13-28 Equation; what is it part of 13) x= √1-y 2 ; circle 14) y=√4-4x 2 ; ellipse 15) y=1/2x 2 ; parabola 16) y=x 2 ; parabola 17) y=x 2 +4x+5; parabola 18) y=1/4x 2 +1; parabola 19) x 2 +y 2 =9; circle 20) y=2-x; line segment Check your graphs with me, if you want
3
8.5 Page 712 #34, 36
4
38, 40
5
42, 44
6
46, 48
7
50, 52
8
54, 56
9
8.6: Trigonometric Forms and Roots of Complex Numbers February 12, 2009
10
Objectives Learn trigonometric form Find the products and quotients of complex numbers Apply De Moivre’s theorem Find roots of complex numbers
13
Trigonometric form The expression r (cos θ + i sin θ) is the trigonometric form of a+bi, where a = r cos θ and b = r sin θ The number r = √(a 2 + b 2 ) is the modulus of a+bi, θ is the argument of a+bi. Tan θ = b/a
14
Converting to trigonometric form 2+i r = √(a 2 + b 2 ) tan θ = b/a r (cos θ + i sin θ) is trigonometric form
16
16 Product of Complex Numbers in Trig Form
18
18 Quotient of Complex Numbers in Trig Form
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.