Presentation is loading. Please wait.

Presentation is loading. Please wait.

2. Boolean Algebra and Logic Gates

Similar presentations


Presentation on theme: "2. Boolean Algebra and Logic Gates"— Presentation transcript:

1 2. Boolean Algebra and Logic Gates

2 Boolean Algebra and Logic Gates
Basic Definitions (일반적인 대수 체계의 경우) 1. Closure : A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique elements of S. 2. Associative law : (x*y)*z=x*(y*z) for all x,y,z∈S 3. Commutative law : x*y=y*x for all x,y∈S 4. Identity elements: for all x∈S, e*x=x*e=x ex) set of integers I={…, -3, -2, -1, 0, 1, 2, 3, …}, x+0=0+x=x 5. Inverse : A set S having the identity elements for all x∈S , y∈S, x*y=e 6. Distributive law : x*(y . z)=(x*y) . (x*z)

3 Boolean Algebra and Logic Gates
예) 실수 (+) : 덧셈 Identity element : 0 Inverse : -a (.) : 곱셈 Identity : 1 Inverse : 1/a Distributive law A . (B+C) = A . B + A . C

4 Boolean Algebra and Logic Gates
논리의 체계적인 조작 : 즉 각 element가 논리적인 값들임. (크기가 있는 것이 아님) 일단 논리의 종류(element의 개수 (ex:참,중간,거짓등))가 여러 개를 가정함 연산자 2개를 정의 (+), (.) Closure Identity element (x+0=0+x=x, x.1=1.x=x Commutative law (x+y=y+x, x.y=y.x) Distributive law (x. (y+z)=(x.y)+(x.z), x+(y.z)=(x+y) .(x+z)) 보수 (complement) (x+x’=1, x.x’=0의 x’ 존재) 2개이상의 다른 종류의 element 존재

5 Boolean Algebra의 예 0.5.(0.75+0.25) = 0.5.0.75+0.5.0.25 의 분배법칙이 맞는지?
{참, 참중간, 중간, 거짓중간, 거짓}의 경우에 다음의 빈칸을 채우시오 AND 참중간 중간 거짓중간 거짓 OR 참중간 중간 거짓중간 거짓 AND 1 0.75 0.5 0.25 OR 1 0.75 0.5 0.25 0.5.( ) = 의 분배법칙이 맞는지? 0.25+(1.0) = (0.25+1) .(0.25+0) 의 분배법칙이 맞는지?

6 Boolean Algebra and Logic Gates
X+(y.z)=(x+y) .(x+z)는 일반 대수에서는 성립하지 않음 Boolean algebra에서는 역원이 없슴 일반 대수는 원소가 무한이 많은 실수를 다룸. 하지만 boolean algebra에서는 논리적인 원소들을 다름  현재는 two-value의 원소를 다룸)

7 Boolean Algebra and Logic Gates
Two-Value algebra : B={0,1} Not 연산자의 등장 : element가 두 개밖에 없으므로 가능 x y x.y x y x+y x x’

8 Basic Theorems and Properties of Boolean Algebra
Duality-책의 증명내용참고(postulate로부터 theorem증명과정임) - interchange OR and And operators and replace 1’s by 0’s and 0’s by 1’s 증명 방법 : 대수적인 방법(예:theorem 1a  x+x=(x+x).1=(x+x)(x+x’)=x+xx’=x+0=x) 과 모든 가능한 조합으로부터의 진리표를 만들어 증명하는 방법 모두 가능 (예: theorem 6(a)- 다다음 슬라이드) Operator precedence 1. Parentheses 2. NOT 3. AND 4. OR

9 Basic Theorems and Properties of Boolean Algebra
증명 순서 postulate postulate postulate postulate Theorem Theorem

10 Basic Theorems and Properties of Boolean Algebra
Theorem 2(a) 증명 x+1 = 1.(x+1) = (x+x’)(x+1) = x+x’.1 =x+x’ =1 Theorem 6(a) 증명해볼 것 : x+xy = x Theorem 6(a)의 진리표에 의한 증명 x y xy x+xy Theorem 6(b) 증명방법 : duality x+xy = x  x(x+y) = x

11 Boolean Functions Table 2-1 익힐 것 일반적인 function 의 예 F(x,y) = x+xy

12 Boolean Functions F1 = x + y'z F2 = x'y'z + x'yz +xy'
= x'z(y'+y) + xy' = x'z + xy'(최소 gate이용) F3 = xy + y'z를 gate implementation 및 truth table 작성 하시오.

13 Boolean Functions – Algebraic Manipulation
Ex 2-1) Simplify the following Boolean functions to a minimum number of literals.   1. x(x'+y) = xx' + xy = 0 + xy = xy.   2. x +x'y = (x+x')(x+y) = 1(x+y) = x + y.   3. (x+y)(x+y') = x + xy + xy' + yy' = x(1+y+y') = x. (다른 방법으로 해볼 것)   4. xy + x'z + yz = xy + x'z + yz(x+x')                   = xy + x'z + xyz + x'yz                     = xy(1+z) + x'z(1+y)                    = xy + x'z   5. (x+y)(x'+z)(y+z) = (x+y)(x'+z) : by duality from function 4. (A + B + C)'= (A+x)'      let B+C=x = A'x'          by theorem 5(a)(DeMorgan) = A'(B+C)'     substitute B+C=x   = A'(B'C')      by theorem 5(a)(DeMorgan)   = A'B'C'       by theorem 4(b)(associative) => (A+B+C+D+…+F)' = A'B'C'D'…F' (ABCD…F)' = A' +B'+ C' + D' + … + F'

14 Boolean Functions – Complement of a Function
Ex 2-2) Find the complement of the functions F1=x'yz'+x'y'z, F2=x(y'z'+yz). F1' = (x'yz'+x'y'z)' = (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z') F2' = [x(y'z'+yz)]' = x'+(y'z'+yz)' = x'+(y'z')'(yz)'  = x'+(y+z)(y'+z') Ex 2-3) Find the complement of the functions F1 And F2 Ex 2-2 by taking their duals and complementing each literal.    DeMorgna’s rule에 의하면 (A+B)’는 A+B의 dual인 AB의 각 literal 을 complement 시킨 A’B’ 와 같음 1. F1 = x'yz' + x'y'z.     The dual of F1 is (x'+y+z')(x'+y'+z)    Complement each literal : (x+y'+z)(x+y+z')=F1' 2. F2 = x(y'z'+yz). The dual of F2 is x+(y'+z')(y+z)이다. Complement each literal : x'+(y+z)(y'+z')=F2'

15 Canonical and Standard Forms
Minterms(standard product) and Maxterms(standard sum)  (m3)’= M3 의 관계 주목할 것

16 Canonical and Standard Forms
Minterms(standard product) and Maxterms(standard sum) m3 = x’yz, M3 = x+y’+z’ m1 = M1 = m6 = M6 = m7 = M7 =

17 Canonical and Standard Forms
f1 = x'y'z+xy'z'+xyz = m1+m4+m7 f2 = x'yz+xy'z+xyz'+xyz = m3+m5+m6+m7 f1 = (x+y+z)(x+y'+z)(x+y'+z' )(x'+y+z')(x'+y'+z) = M0M2M3M5M6 f2 = (x+y+z)(x+y+z‘)(x+y'+z)(x'+y+z)   = M0M1M2M4

18 Canonical and Standard Forms
f = x'y'z+ xy'z'+xyz = m1+m4+m7 =(x+y+z)(x+y'+z)(x+y'+z' )(x'+y+z')(x'+y'+z) = M0M2M3M5M6 m1 m4 m7 f x y z index x'y'z xy'z' xyz 1 2 3 4 5 6 7

19 Canonical and Standard Forms
f = x'y'z+ xy'z'+xyz = m1+m4+m7 =(x+y+z)(x+y'+z)(x+y'+z' )(x'+y+z')(x'+y'+z) = M0M2M3M5M6 M0 M2 M3 M5 M6 f x y z index (x+y+z) (x+y'+z) (x+y'+z') (x'+y+z') (x'+y'+z) 1 2 3 4 5 6 7

20 Canonical and Standard Forms
Sum of Minterms Ex 2-4) Express the Boolean function F=A+B'C in a sum of minterms. A = A(B+B') = AB +AB' = AB(C+C') + AB'(C+C') = ABC + ABC' + AB'C +AB'C' B'C = B'C(A+A') = AB'C + A'B'C F = A + B'C  = A' B'C + AB'C' + AB'C + ABC' + ABC = m1 + m4 + m5 + m6 + m7 = ∑(1, 4, 5, 6, 7) F = xy + x'z  해볼 것 (진리표 방법 먼저 해보고, 이후 식 전개를 통하여 해볼 것)

21 Canonical and Standard Forms
Product of maxterms Ex 2-5) Express the Boolean function F = xy + x'z in a product of maxterm form. F = xy + x'z = (xy+x')(xy+z) = (x+x')(y+x')(x+z)(y+z) = (x'+y)(x+z)(y+z) x' + y= x' + y + zz'= (x'+y+z)(x'+y+z') x + z= x + z + yy'= (x+y+z)(x+y'+z) y + z= y + z + xx'= (x+y+z)(x'+y+z) F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')   = M0M2M4M5 F(x, y, z) = ∏(0, 2, 4, 5) F=A+B'C 해 볼 것

22 Canonical and Standard Forms
Conversion between Canonical Forms F(A, B, C) = ∑(1, 4, 5, 6, 7) F' (A, B, C) = ∑(0, 2, 3) = m0 + m2 + m3 F = (m0+m2+m3)' = m0'm2'm3' = M0M2M3 = ∏(0, 2, 3) , mj' = Mj Ex) F = xy + x'z F(x, y, z) = ∑(1, 3, 6, 7) F(x, y, z) = ∏(0, 2, 4, 5)

23 Canonical and Standard Forms
- Sum of product : F1 = y' +xy + x'yz' - Product of sum : F2 = x(y'+z)(x'+y+z') - Ex) F3 = AB + C(D+E) = AB +CD + CE

24 Other Logic Operations

25 Digital Logic Gate

26 Digital Logic Gate

27 Digital Logic Gate Extension to Multiple Inputs – 교환,결합법칙이 성립하는 경우 다중입력으로 쉽게 확장 (AND, OR 의 경우) AND 의 경우 : (xy)z=x(yz)=3 input 의 xyz gate x y x z y z x y z OR 의 경우도 성립 : (x+y)+z = x+(y+z) = 3 input 의 OR gate

28 F = [(ABC)'(DE)']' = ABC + DE
Digital Logic Gate Extension to Multiple Inputs – 다른 연산은 체크해보아야 함 The NAND and NOR operators are not associative. (x↓y)↓z≠x↓(y↓z)  NOR (x↓y)↓z= [(x+y)'+z]' = (x+y)z'= xz' + yz' x↓(y↓z)= [x+(y+z)'] ' = x'(y+z)= x'y + x'z x↓y↓z= (x+y+z)' x↑y↑z= (xyz)'  NAND F = [(ABC)'(DE)']' = ABC + DE

29 Digital Logic Gate - exclusive-OR (교환, 결합법칙 성립)
Positive and Negative Logic

30 Digital Logic Gate Positive and Negative Logic H=1, L=0 일때, AND gate
H=0, L=1 일때, OR gate H H H H L L L H L L L L


Download ppt "2. Boolean Algebra and Logic Gates"

Similar presentations


Ads by Google