Download presentation
Published byLenard Smith Modified over 9 years ago
1
15-213 Recitation 2 – 2/4/02 Outline Floating Point Typecasting
Machine Model Assembly Programming Structure Addressing Modes L2 Practice Stuff Mengzhi Wang Office Hours: Thursday 1:30 – 3:00 Wean Hall 3108
2
Floating Point (Better known as “I’m going to kill the person that thought this up”)
IEEE Floating Point Standard notation Tons of features we won’t look at Floating Point at a bit level: s – sign bit (S) exp – exponent (maps to E, has e bits) frac – significand (maps to M, has f bits) Numerical Equivalent: –1s M 2E “Normalized” and “Denormalized” encoding s exp frac
3
“Normalized” Encoding
exp 0 and exp 111…1 If exp = 111…1, it’s or NAN E = exp – B B is the “Bias” Usually 2e-1 – 1, but can be different exp: Unsigned integer value [1, 2e – 1] M = 1.{frac} {frac} are the bits of frac frac is a fractional binary number Normalized Numbers have range [21-B, 2B+1) And their negatives
4
“Denormalized” Encoding
exp = 0 E = -B+1 M = 0.{frac} Denormalized Numbers have Range [0, 21-B) And their negatives NaN + 0 +Denorm +Normalized -Denorm -Normalized +0
5
FP Examples 8 bit FP, 1 bit sign, 4 bit exponent, 3 bit significand
Q: What is the bias? A: Bias is 7. (2(4-1)-1) Representation -> Number -28.0
6
Number -> Representation
More FP Examples 8 bit FP, 1 bit sign, 4 bit exponent, 3 bit significand, Bias of 7 Number -> Representation 9 .6 -15
7
Typecasting What is typecasting? How to typecasting?
Some types can be converted (or typecast) to others in C. Typecasting is often unavoidable and essential. How to typecasting? Assume: x has type type_a y has some type that can be cast to type_a cast y to type_a and assign it to x: x = (type_a)y; What types can be cast? All primitive types in C can be cast to another. Pointers can be also be cast.
8
Typecasting Examples Casting integers from large size data types to small ones C integer types long, int, short, char Possible overflow Occurs when the data is out of the range of the small data type Normal: int a = 1024; short s = (short)a; -or- short s = a; -> S = 1024; Overflow: int x = 0x0034a140; short s = x; -> s = 0xa140 =
9
Typecasting Examples Casting integers from small size data types to large ones Sign Extension: the sign bit is copied to every higher bit for signed types Positive numbers: short s = 0xf0; int i=s; unsigned u = s; -> i = 240 -> u = 240 Negative numbers: signed char c = 0xf0; unsigned char uc = 0xf0; int i = c; unsigned c2u = c; unsigned uc2u = uc; -> i = -16, NOT 240 -> c2u = -> uc2u = 240
10
Typecasting with FPs Casting floating point numbers to integers
Rounded to the nearest integer value Example 1: float a = -3.5; int i = (int)a; -> i = -3 (note round to zero behavior) Example 2: int i = 4; double x = (double)i; int root = (int)sqrt(x); -> x = 4.0 ->root = 2
11
Typecasting with FPs (cont.)
Casting integers to floating point numbers Some large integers can not be represented exactly in floating point. Rounding error example: unsigned int i = 0xfffffff0; float f = (float)i; double d = (double)i; -> i = -> f = -> d =
12
Machine Model CPU Memory Addresses Registers E I P Object Code
Program Data Data Condition Codes Instructions Stack
13
Special Registers %eax Return Value %eip Instruction Pointer
%ebp Base (Stack Frame) Pointer %esp Stack Pointer
14
Assembly Programming: Structure
Function Setup Save Old Base Pointer (pushl %ebp) Set up own base pointer (movl %esp, %ebp) Note that this saves the old stack pointer Save any registers that could be clobbered Where? Function Body Operations on data, loops, function calls
15
Assembly Programming: Structure
Function Cleanup Return value placed in %eax What about returning larger values? (structs, doubles, etc.) Restore Caller’s Stack Pointer (movl %ebp, %esp) Restore Old Base Pointer (popl %ebp) Return Where does it return to?
16
Assembly Programming: Simple Addressing Modes
Examples (R) Mem[R] $10(R) Mem[R + 10] $0x10(R) Mem[R + 16]
17
Assembly Programming: Indexed Addressing Modes
Generic Form D(Rb, Ri, S) Mem[Reg[Rb]+S*Reg[Ri]+ D] Examples (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]] D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
18
Example 1: Simple Stuff int foo(int x, int y) { int t, u; t = 3*x-6*y;
Method 1 foo: pushl %ebp movl %esp,%ebp movl 8(%ebp),%edx movl 12(%ebp),%eax movl $3, %ecx imull %ecx,%edx movl $6, %ecx imull %ecx,%eax subl %eax,%edx decl %edx movl %edx,%eax sall $4,%eax imull %edx,%eax negl %eax movl %ebp,%esp popl %ebp ret int foo(int x, int y) { int t, u; t = 3*x-6*y; t = t - 1; u = 16*t; return -u*t; }
19
Example 1: Simple Stuff (cont.)
Method 2 foo: pushl %ebp movl %esp,%ebp movl 8(%ebp),%edx movl 12(%ebp),%eax leal (%edx,%edx,2),%edx leal (%eax,%eax,2),%eax addl %eax,%eax subl %eax,%edx decl %edx movl %edx,%eax sall $4,%eax imull %edx,%eax negl %eax movl %ebp,%esp popl %ebp ret int foo(int x, int y) { int t, u; t = 3*x-6*y; t = t - 1; u = 16*t; return -u*t; }
20
Example 2: More Simple Stuff
absdiff: pushl %ebp movl %esp,%ebp movl 8(%ebp),%edx movl 12(%ebp),%eax cmpl %eax,%edx jl .L3 subl %eax,%edx movl %edx,%eax jmp .L6 .L3: subl %edx,%eax .L6: movl %ebp,%esp popl %ebp ret int absdiff(int x, int y) { if (x>=y) return x-y; else return y-x; } If condition Then part Else part
21
Example 3: Backwards get_sum: pushl %ebp movl %esp,%ebp pushl %ebx
movl 8(%ebp),%ebx movl 12(%ebp),%ecx xorl %eax,%eax movl %eax,%edx cmpl %ecx,%eax jge .L4 .L6: addl (%ebx,%edx,4),%eax incl %edx cmpl %ecx,%edx jl .L6 .L4: popl %ebx movl %ebp,%esp popl %ebp ret # ebx = 1st arg # ecx = 2nd arg # eax = 0 # edx = 0 # # if (ecx >= 0) goto L4 # eax += Mem[ebx+edx*4] # edx ++ # if (ecx < edx) goto L6
22
Example 3: Answer int get_sum(int * array, int size) { int sum = 0;
pushl %ebp movl %esp,%ebp pushl %ebx movl 8(%ebp),%ebx movl 12(%ebp),%ecx xorl %eax,%eax movl %eax,%edx cmpl %ecx,%eax jge .L4 .L6: addl (%ebx,%edx,4),%eax incl %edx cmpl %ecx,%edx jl .L6 .L4: popl %ebx movl %ebp,%esp popl %ebp ret int get_sum(int * array, int size) { int sum = 0; int i=0; for (i=0; i<size; i++) sum += array[i]; return sum; }
23
Example 4: Jump Tables switch(operation) { case 0:
printf("Sum is: %d\n", x + y); break; case 1: printf("Diff is: %d\n", x - y); case 2: printf("Mult is: %d\n", x * y); case 3: printf("Div is: %d\n", x / y); case 4: printf("Mod is: %d\n", x % y); default: printf("Unknown command\n"); } return 0; #include <stdio.h> int main(int argc, char *argv[]) { int operation, x, y; if(argc < 4) { printf("Not enough arguments\n"); exit(0); } operation = atoi(argv[1]); x = atoi(argv[2]); y = atoi(argv[3]);
24
Example 5 A0: mystery: A1: movl 8(%ebp), %edx A2: movl $0x0, %eax
A3: cmpl $0x0, 12(%ebp) A4: je .L11 A5: .L8 A6: cmpl $0x0, 12(%ebp) A7: jle .L9 A8: add %edx, %eax A9: decl 12(%ebp) A10: jmp .L10 A11:.L9 A12: sub %edx, %eax A13: incl 12(%ebp) A14:.L10 A15: compl $0x0, 12(%ebp) A16: jne .L8 A17:.L11 A18: mov %ebp, %esp A19: pop %ebp A20: ret # Get x # Set result = 0 # Compare y:0 # If(y == 0) goto Done # Loop: # If(y <= 0) goto Negative # result += x # y— # goto Check # Negative: # result -= x # y++ # Check: # If(y != 0) goto Loop # Done: # # Cleanup
25
Example 5 int multiply(int x, int y) { int result = 0;
A0: mystery: A1: movl 8(%ebp), %edx A2: movl $0x0, %eax A3: cmpl $0x0, 12(%ebp) A4: je .L11 A5: .L8 A6: cmpl $0x0, 12(%ebp) A7: jle .L9 A8: add %edx, %eax A9: decl 12(%ebp) A10: jmp .L10 A11:.L9 A12: sub %edx, %eax A13: incl 12(%ebp) A14:.L10 A15: compl $0x0, 12(%ebp) A16: jne .L8 A17:.L11 A18: mov %ebp, %esp A19: pop %ebp A20: ret int multiply(int x, int y) { int result = 0; while (y != 0) { if (y > 0) { result += x; y--; } else { result -= x; y++; return result;
26
Challenge Problem A function with prototype
int mystery2(int *A, int x, int N) is compiled into the assembly on the next page. Hint: A is an array of integers, and N is the length of the array. What is this mystery function computing?
27
Challenge Problem: Code
A0: mystery2: A1: push %ebp A2: movl %esp, %ebp A3: movl 8(%ebp), %ebx A4: movl 16(%ebp), %edx A5: movl $0xffffffff, %eax A6: movl $0x0, 0xfffffff4(%ebp) A7: decl %edx A8: compl %edx, %ecx A9: jg .L13 A10: .L9 A11: add %edx, %ecx A12: sarl $0x1, %ecx A13: cmpl 12(%ebp), (%ebx,%ecx,4) A14: jge .L10 A15: incl %ecx A16: movl %ecx, 0xfffffff4(%ebp) A17: jmp .L12 A18: .L10 A19: cmpl (%ebx,%ecx,4), 12(%ebp) A20: jle .L11 A21: movl %ecx, %edx A22: decl %edx A23: jmp .L12 A24: .L11 A25: movl %ecx, %eax A26: jmp .L13 A27: .L12 A28: cmpl %edx, 0xfffffff4 A29: jle .L9 A30: .L13 A31: movl %ebp, %esp A32: pop %ebp A33: ret
28
Challenge Problem: Answer
Answer: Binary Search A0: mystery2: A1: push %ebp A2: movl %esp, %ebp A3: movl 8(%ebp), %ebx A4: movl 16(%ebp), %edx A5: movl $0xffffffff, %eax A6: movl $0x0, 0xfffffff4(%ebp) A7: decl %edx A8: compl %edx, %ecx A9: jg .L13 A10: .L9 A11: add %edx, %ecx A12: sarl $0x1, %ecx A13: cmpl 12(%ebp), (%ebx,%ecx,4) A14: jge .L10 A15: incl %ecx A16: movl %ecx, 0xfffffff4(%ebp) A17: jmp .L12 # Set up # # ebx = Array A # edx = High = N # result = -1 # Low = 0 # ecx = Mid = Low # High— # Compare Low:High # If Low > High goto Done # Loop: # Mid += High # Mid /= 2 # Compare A[Mid]:X # If >=, goto High # Mid++ # Low = Mid # goto Check
29
Challenge Problem (continued)
A19: cmpl (%ebx,%ecx,4), 12(%ebp) A20: jle .L11 A21: movl %ecx, %edx A22: decl %edx A23: jmp .L12 A24: .L11 A25: movl %ecx, %eax A26: jmp .L13 A27: .L12 A28: cmpl %edx, 0xfffffff4 A29: jle .L9 A30: .L13 A31: movl %ebp, %esp A32: pop %ebp A33: ret # High: # Compare X:A[Mid] # If <=, goto Found # High = Mid # High— # goto Check # Found: # Result = Mid # goto Done # Check: # Compare Low:High # If <=, goto Loop # Done: # # Cleanup
30
Challenge Problem int binsearch(int *A, int X, int N) {
int Low, Mid, High; Low = 0; High = N - 1; while ( Low <= High ) { Mid = ( Low + High ) / 2; if ( A[ Mid ] < X ) Low = Mid + 1; else if ( A[ Mid ] > X ) High = Mid - 1; return Mid; /* Found */ } return -1;
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.