Download presentation
Presentation is loading. Please wait.
Published byHubert Leonard Modified over 9 years ago
1
A viable RS Model for Quarks and Leptons with T´ Flavor Symmetry Felix Yu University of California, Irvine Pheno 2010 M-C. Chen, K. T. Mahanthappa, FY – Phys. Rev. D 81, 036004 (2010) [arXiv: 0907.3963 [hep-ph]]
2
Motivation Fermion mass hierarchy unexplained Gauge hierarchy problem motivates new physics at about TeV Randall-Sundrum (RS1) model with bulk fermions provides a good framework –Can get fermion mass hierarchy with O(1) coefficients –Need to suppress FCNCs
3
Randall-Sundrum RS1 Model – warped geometry –5 th dimension compactified via S 1 / 2 –Higgs field confined to TeV brane (y = R), other fields propagate in bulk –From compactification and boundary conditions, can find Fourier modes for bulk fields –SM masses and mixings arise from zero modes Integrate out y to find overlap between SM fields and Higgs Gherghetta, Pomarol (2000), Huber, Shafi (2000), Grossman, Neubert (1999) Randall, Sundrum (1999)
4
Flavor Changing Neutral Currents in RS Change from gauge interaction basis to mass basis Generically get FCNCs if bulk masses are not equal Solutions: (1) alignment, (2) degeneracy †
5
The Finite Group T´ Double covering of A4 –A4 is the discrete invariant rotations of a tetrahedron Has two generators: S=(1234) (4321), T=(1234) (2314) –S 2 =R, T 3 =1, (ST) 3 =1, R 2 =1 R=1: 1, 1´, 1´´, 3 (vector) [use for leptons] R=-1: 2, 2´, 2´´ (spinorial) [use for quarks] Frampton, Kephart (1995)
6
Assignment of T´ Representations Motivated by neutrino mixing data: assign L ~ 3 (LH lepton doublets), N ~ 3 (RH neutrinos) under T to obtain the tri-bimaximal mixing pattern –Introduce e ~ 1, ~ 1 , ~ 1 for charged lepton masses –Tree-level lepton FCNCs are eliminated via degeneracy (left- handed lepton doublets share a common bulk mass term) and alignment (right-handed lepton singlets can freely rotate) Motivated by quark masses, use 2 1 assignment –Tree-level quark FCNCs involving first and second generations are eliminated via degeneracy (up- and down- type first two generations share a common bulk mass term) Require additional flavon fields to break T symmetry on the IR brane
7
Leptons in T´ Purely Dirac neutrino masses Seesaw type 1 neutrino masses
8
Quarks in T´: 2 1 Framework Down-type Yukawa Lagrangian is exactly analogous
9
Parameter Counting Input parameters (Naïve counting) –Charged lepton: 8 (= 4 bulk + 3 Yukawa + 1 flavon) –Neutrino: [seesaw] 6 [7] (= 2 bulk + 2 [3] Yukawa + 2 flavon) –Quark: 24 = (6 bulk + 8 Yukawa + 10 flavon) Actual number of independent input combinations –16 = Lepton matrix (3) + Neutrino matrix (2) + Quark matrices (6 + 5) Contrast with anarchic case –36 [30] for leptons, 36 for quarks Fit parameters –Lepton and quark masses (3 + 6 = 9) –CKM matrix (+ CP violating phase) (3 + 1 = 4) –Neutrino mixing angles (3) 16 Inputs, 16 Outputs
10
Results –Leptons Set all leptonic Yukawas to 1. Renormalization effects negligible. Gives m e =511 keV, m =105.7 MeV, m =1.777 GeV For normal hierarchy For inverted hierarchy Normal, Dc: m sol 2 = 7.6370 10 -5 eV 2, m atm 2 = 2.4031 10 -3 eV 2 Inverted, SS: m sol 2 = 7.6560 10 -5 eV 2, m atm 2 = –2.4009 10 -3 eV 2 Experimental: m sol 2 = 7.65 10 -5 eV 2, m atm 2 = 2.40 10 -3 eV 2 Fusaoka, Koide (1998), Schwetz, Tortola, Valle (2008) Normal, SS: m sol 2 = 7.6520 10 -5 eV 2, m atm 2 = 2.4001 10 -3 eV 2 For normal hierarchy
11
Results – Quarks Bulk mass parameters Flavons and Yukawas Prediction (3 TeV)Fit bounds mumu 1.49 MeV0.75-1.5 MeV mdmd 2.92 MeV2-4 MeV mcmc 0.541 GeV0.56 ± 0.04 GeV msms 36.6 MeV47 ± 12 MeV mtmt 134.8 GeV136.2 ± 3.1 GeV mbmb 2.41 GeV2.4 ± 0.04 GeV Csaki, Falkowski, Weiler (2008) Other Yukawas set to 1
12
Results – CKM and Jarlskog Fusaoka, Koide (1998), Charles, et al. (CKMfitter Group) (2009) Corrections to quark mixings from running are small. Perform fit at m Z
13
Leading FCNC Estimate Leading contribution is from dim-6 operators arising from fermion zero-modes mixing with KK modes Scaled to Z-coupling, leading contribution is Using M KK ~ 3 TeV, kR ~ 11, v = 246 GeV: –coefficient is 2.965 10 -6 for u-c transition –coefficient is 4.156 10 -6 for d-s transition
14
Conclusions RS1 + T´ provides a framework for realistic fermion masses and mixings –Motivated by neutrino mixings and quark masses, we choose T´ representations This choice eliminates tree-level lepton FCNCs and first- second generation quark FCNCs –Can fit for all SM fermion masses, CKM matrix, and Jarlskog invariant with 16 input parameter combinations –Allows a low first KK mass scale, testable at colliders
16
Group Algebra of T´ 2 S=A 1, T= A 2, 2´ S=A 1, T= 2 A 2, 2´´ S=A 1, T=A 2 1 S=1, T=1, 1´ S=1, T= , 1´´ S=1, T= 2 Feruglio, Hagedorn, Lin, Merlo (2007) 3
17
Neutrino Constraints Neutrino measurements (at 2 ) (at 1 ) Well-fit by Tri-Bimaximal Mixing (TBM) Harrison, Perkins, Scott (1999) TBM can be easily obtained from A4 or T´ group symmetries Schwetz, Tortola, Valle (2008) Ma, Rajasekeran (2001)
18
Leptons in T´ T´ contraction: Diagonal charged lepton mass matrix because of T´ assignments and flavon VEVs
19
Quarks in T´: The 2 1 Framework 2 1
20
Quarks in T´: The 2 1 Framework 2 1
21
Citations C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008) S. Bar-Shalom and A. Rajaraman, Phys. Rev. D 77, 095011 (2008). arXiv:0711.3193 [hep-ph] S. Bar-Shalom, A. Rajaraman, D. Whiteson, FY, Phys. Rev. D 78, 033003 (2008). arXiv:0803.3795 [hep-ph] CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005). arXiv:hep-ph/0406184 M.C. Chen and S.F. King, arXiv:0903.0125 [hep-ph] M.C. Chen and K.T. Mahanthappa, arXiv:0904.1721 [hep-ph] V. Cirigliano, B. Grinstein, G. Isidori and M. B. Wise, Nucl. Phys. B 728, 121 (2005). arXiv:hep-ph/0507001 G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036 G. Engelhard, J.L. Feng, I. Galon, D. Sanford and FY, arXiv:0904.1415 [hep-ph] J.L. Feng, C.G. Lester, Y. Nir and Y. Shadmi, Phys. Rev. D 77, 076002 (2008) arXiv:0712.0674 [hep-ph]. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Nucl. Phys. B 775, 120 (2007) arXiv:hep-ph/0702194 P.H. Frampton and T.W. Kephart, Int. J. Mod. Phys. A 10, 4689 (1995). arXiv:hep-ph/9409330 T. Gherghetta and A. Pomarol, Nucl. Phys. B 586, 141 (2000). arXiv:hep-ph/0003129 Y. Grossman and M. Neubert, Phys. Lett. B 474, 361 (2000). arXiv:hep-ph/9912408 P.F. Harrison, D.H. Perkins and W.G. Scott, Phys. Lett. B 458, 79 (1999). arXiv:hep-ph/9904297 S.J. Huber and Q. Shafi, Phys. Lett. B 544, 295 (2002). arXiv:hep-ph/0205327 C.I. Low and R.R. Volkas, Phys. Rev. D 68, 033007 (2003). arXiv:hep-ph/0305243 E. Ma and G. Rajarasekaran, Phys. Rev. D 64, 113012 (2001). arXiv:hep-ph/0106291 L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). arXiv:hep-th/9906064 L. Randall and R. Sundrum, Phys. Rev. Lett 83, 3370 (1999). arXiv:hep-ph/9905221 L. Randall and R. Sundrum, Nucl. Phys. B 557, 79 (1999). arXiv:hep-th/9810155 T. Schwetz, M. Tortola and J.W.F. Valle, New J. Phys. 10, 113011 (2008). arXiv:0808.2016 [hep-ph]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.