Download presentation
Presentation is loading. Please wait.
Published byIris Carter Modified over 9 years ago
1
PART 10 Pattern Recognition 1. Fuzzy clustering 2. Fuzzy pattern recognition 3. Fuzzy image processing FUZZY SETS AND FUZZY LOGIC Theory and Applications
2
Fuzzy clustering Fuzzy c-means clustering method 2
3
Fuzzy clustering 3
4
4
5
Fuzzy c-means algorithm 5
6
Fuzzy clustering 6
7
7
8
8
9
9
10
Clustering by Equivalence The fuzzy clustering problem can be viewed as the problem of identifying an appropriate fuzzy equivalence relation on given data. It usually cannot be done directly, we can readily determine a fuzzy compatibility relation (reflexive and symmetric) in terms of an appropriate distance function applied to given data. Then, a meaningful fuzzy equivalence relation is defined as the transitive closure of this fuzzy compatibility relation. 10
11
Fuzzy clustering Distance function 11
12
Fuzzy clustering Theorem 10.1 12
13
Fuzzy clustering Example 10.2 13
14
Fuzzy clustering 14
15
Fuzzy clustering 15
16
Fuzzy clustering 16
17
Fuzzy clustering 17
18
Fuzzy clustering Example 10.3 18
19
Fuzzy clustering 19
20
Fuzzy clustering 20
21
Fuzzy clustering 21
22
Fuzzy clustering 22
23
Fuzzy clustering Membership-Roster method 23
24
Fuzzy clustering Example 10.4 24
25
Fuzzy clustering 25
26
Fuzzy clustering 26
27
Fuzzy clustering 27
28
Fuzzy clustering 28
29
Fuzzy clustering Fuzzy syntactic method 29
30
Fuzzy clustering Grammar 30
31
Fuzzy clustering Fuzzy Grammar 31
32
Fuzzy clustering Example 10.5 32
33
Fuzzy clustering 33
34
Fuzzy clustering 34
35
Fuzzy clustering 35
36
Fuzzy clustering 36
37
Fuzzy clustering 37
38
Fuzzy clustering 38
39
Fuzzy image processing Fuzzy matrix 39
40
Fuzzy image processing Example 10.6 40
41
Fuzzy image processing 41
42
Fuzzy image processing 42
43
Fuzzy image processing 43
44
Fuzzy image processing 44
45
Fuzzy image processing 45
46
46 Exercises 10.2 10.5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.