Download presentation
Presentation is loading. Please wait.
Published byMelanie George Modified over 9 years ago
1
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 KM3NeT: optimization studies for a cubic kilometer neutrino detector R. Coniglione P. Sapienza Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali del Sud K. Fratini Istituto Nazionale di Fisica Nucleare- Genova for the KM3NeT collaboration
2
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Optimization studies In order to give a “reference” for the sensitivity, the effective neutrino areas and the detector resolution in the Conceptual Design Report of the KM3Net collaboration a “reference detector” is reported even if it is not the final detector configuration An optimization work is going on in order to find the best detector geometry which is a compromise between performance, technical feasibility and cost
3
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 The MonteCarlo simulations Simulation codes used ANTARES codes modified for km 3 detectors + LNS improvements and generation - water absorption and scattering - optical background isotropic distributed around the event time window - event trigger based on local coincidences In order to get the angular resolution of 0.1° at 30 TeV (design goal of the detector) quality cuts on the reconstruction are applied. Optimization of the basic elements of the detector geometry: the detection unit (tower vs string) the photo-sensor unit (PMT quantum efficiency and directionality)
4
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Detection units optimization three dimensional vs monodimensional Some examples of operative “Detection Units” The mono-dimensional H = 360 m Antares Icecube Storey 1 Storey 2 Storey 3 Storey 60 17 m H = 1000 m H = 70 m Baikal NT 200
5
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Detection units optimization three dimensional vs monodimensional Some examples of operative “Detection Units” The three-dimensional 40 m 20 m Nestor NEMO H = 600 m H = 330 m Storey 12 Storey 1 Storey 2 Storey 3 30m
6
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Detection units optimization three-dimensional vs mono-dimensional 20m 1 m from to ….. Simulated detection unit characteristics: - instrumented 680 m - number of bars 18 - number of PMTs per bar 4 (down-horizontal looking) - bar vertical distance 40 m - PMT 10’’ with QE max 23% 81 towers 140m distant SIMULATIONS AS A FUNCTION OF THE BAR LENGTH Bar length 20, 15, 10, 7.5, 1 m -> same detector volume same number of PMT photocatode area From a three-dimensional to a mono-dimensional detection unit
7
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Bar length effect Muon effective area median rec bar length 20m bar length 15m bar length 10m bar length 7.5m bar length 1m No quality cut applied Worsening of the angular resolution with shorter bar length
8
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Bar length effect quality cut applied Effective area ratio with respect to 20m Muon effective area bar length 15m bar length 10m bar length 7.5m bar length 1m bar length 20m bar length 15m bar length 10m bar length 7.5m bar length 1m
9
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Bar length effect 1m bar length 15m bar length E 10 2 10 4 GeV RMS ~55° RMS ~65° rec rec Vertical muons -> cos >0.8 (~36°) RMS ~24° RMS ~27° counts
10
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Bar length effect E 10 2 10 4 GeV Vertical muons -> cos >0.8 (~36°) Muon hits in only one tower 15m bar length 1m bar length rec rec counts In mono-dimensional detection units the phi angle for vertical muons is not well determined
11
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 The simulated geometries Reference detector 169 towers Number of detection units 225169 Detection units distance (m) 95140 PMT type & QE 3” max 33% 10” max 23% Number of OM 832512168 Number of PMT 17482512168 Storey distance (m) 16.540 PMT total catode area (m 2 ) 682535 Volume (km 3 ) 1.051.92 Reference detector OM -> 21 PMTs 3” PMT Quantum efficiency 169 towers OM ->1 PMT 10”
12
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Quantum efficiency effect From Hamamatsu catalog PMT < 3” 45% 35%
13
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Quantum efficiency effect preliminary results 169 towers QE max 23 % 169 towers QE max 45% 169 towers QE max 35% ▬ ref det with QE 33% max 45% /max 23% max 35% /max 23% Ratio for 169 towers detector Neutrino effective areas Quality cuts applied (~0.1°@30TeV)
14
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Direction sensitive OM R x R x Standard PMT Direction sensitive OM mirror Photocatode In order to get information on the Cherenkov light direction -> Light guide and multi-anodic PMT Prototype already realized No information on the arrival direction of Cherenkov light
15
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Direction sensitive OM 81 towers 140 m distant detector PMT with standard QE (max 23%) Ratio Neutrino effective areas < 2°
16
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Direction sensitive OM preliminary results 169 towers 140 m distant detector No quality cuts applied Ratio Neutrino effective areas Direction sensitive OM PMT standard log 10 E (GeV) A eff (m 2 ) log 10 E (GeV) Ratio A eff
17
R. Coniglione, VLVnT08, Toulon 22.24 April ‘08 Summary Three-dimensional detection units shows a better reconstruction in particular at low energy E <10÷100 TeV PMT quantum efficiency and direction sensitive OM improve the effective area at low energy E <10÷100 TeV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.