Download presentation
Presentation is loading. Please wait.
Published byDarrell Flowers Modified over 9 years ago
1
All-to-all broadcast problems on Cartesian product graphs Jen-Chun Lin 林仁俊 指導教授:郭大衛教授 國立東華大學 應用數學系碩士班
2
Outline Introduction Main result Reference
3
Introduction
4
Suppose each vertex has a private message needed to send to every other vertices(all-to-all broadcast). At each time unit, vertices exchange their messages under the following constraints: (1) only one message can travel a link at a time unit (2) a message requires one time unit to be transferred between two nodes (3) each vertex can use all of its links at the same time
5
Chang et al. They gave upper and lower bounds for all-to- all broadcast number (the shortest time needed to complete the all-to-all broadcast) of graphs and give formulas for the all-to-all broadcast number of trees, complete bipartite graphs and double loop networks under this model.
6
All-to-all broadcasting numbers of Cartesian product of cycles and complete graphs
7
Given a graph G and a positive integer t, we use G ◦ t to denote the multigraph obtained from G by replacing each edge in E(G) with k edges
8
① ② ③ ① ② ③ ① ①② ② ③ ③
10
For a graph G with a set of edge-disjoint subgraphs of G◦t is a t-broadcasting system of G.
11
Theorem
13
0,0 2,0 1,0 0,1 1,1 1,2 0,3 3,0 0,4 1,3 1,42,4 2,2 2,3 3,1 3,4 3,3 3,2 2,1 0,2 ① ① ② ② ③ ③ ④ ④ ⑤ ⑤ ⑥ ⑥⑦ ⑦ ⑧ ⑧ ⑨ ⑨ ⑩ The broadcasting tree
14
0,0 2,0 1,0 0,1 1,1 1,2 0,3 3,0 0,4 1,3 1,42,4 2,2 2,3 3,1 3,4 3,3 3,2 2,1 0,2 ① ① ② ② ⑨ ⑧ ④ ⑤⑥ ③ ⑨ ③ ④ ⑧ ⑩ ⑦ ⑤⑥ ⑦ The broadcasting tree
15
Lemma Given a graph G, if and only if there exists a t-broadcasting systm of G.
16
Lemma For any graph G with,
17
Theorem
20
0,0 2,0 1,0 0,1 1,1 1,2 0,3 3,0 0,4 1,3 1,42,4 2,2 2,3 3,1 3,4 3,3 3,2 2,1 0,2 4,0 4,1 4,4 4,3 4,2 The perfect broadcasting tree ① ② ③④ ⑤⑥ ⑦⑧ ① ① ② ② ③ ③ ④ ④ ⑤ ⑤⑥ ⑥ ⑦ ⑦ ⑧ ⑧
21
Theorem For positive integers m and n with We set
24
3 1 The subgraph 0,0 0,2 0,1 0,4 0,3 6,0 3,0 2,0 1,0 7,0 4,0 8,0 5,0 1 1 2 2 111 222 2 333 3 3 4 444 4 4 5 555 5 5 6 666 6 6
25
0,0 0,1 6,0 3,0 2,0 1,0 7,0 4,0 8,0 5,0 0,2 0,4 0,3 7 7 7 7 7 7 8 8
26
All-to-all broadcasting numbers of hypercubes
27
Theorem
28
For a vertex the weight of, denoted by, is defined by Definition 0 3 2 1 n個n個
29
For the set the right-shift of elements in is a function from to defined By = Definition =ex:
30
the orbit of v, denoted by A vertex v in is said to be Definition
32
Theorem
33
Lemma (0,0,………,0) (1,0,………,0)(0,1,………,0) (0,0,………,1) ……… 方向 1 方向 2 方向 n (2,0,………,0)(0,2,………,0) (0,0,………,2) (1,0,………,1)(1,1,………,0)
34
Lemma (1,1,………,1) (0,1,………,1)
35
6 2 0,0 0,11,0 0,2 1,1 2,0 0,31,23,0 2,1 3,1 1,3 2,2 3,2 2,3 3,3 11 2 4 433 55 6 7 7 8
36
Thanks for your listening!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.