Download presentation
Presentation is loading. Please wait.
Published byBriana Lane Modified over 9 years ago
1
Bill Madden 559 2123
2
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) 1 2 3 4 1.Square of the transition moment n e m 2 2.Frequency of the light 3.Population difference (N m - N n ) 4.Resonance factor - Dirac delta function (0) = 1
3
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) 1 Fermi’s Golden Rule
4
n m n* mdn* md ~ d /dq Quantum Mechanics Wave Mechanics Schrödinger Notation Quantum Mechanics Matrix Mechanics Dirac Notation Classical Analogue Dipole moment change over motion …coordinate q Take Home Message
5
n m n* mdn* md ~ d /dq Quantum Mechanics Wave Mechanics Schrödinger Notation Quantum Mechanics Matrix Mechanics Dirac Notation Classical Analogue Dipole moment change over motion …coordinate q Take Home Message ~
6
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) 1 2 3 4 1.Square of the transition moment n e m 2 2.Frequency of the light 3.Population difference (N m - N n ) 4.Resonance factor - Dirac delta function (0) = 1
7
ABC Rotation of a Diatomic Molecule
8
For pure rotational transitions a molecule must have a permanent dipole moment
9
Observing the dipole change from the side i.e. the direction of propagation
10
dμ/dθ ≠ 0
11
Selection Rules Harry Kroto 2004 ∆N = ?
12
(N m - N n ) N m -N m
13
0 1 1.000 1.00 3.84 1 3 0.981 2.94 7.69 2 5 0.945 4.73 11.5 3 7 0.893 6.25 15.4 4 9 0.828 7.45 19.2 5 11 0.754 8.29 23.1 6 13 0.673 8.75 26.9 7 15 0.590 8.85 30.8 8 17 0.507 8.62 34.6 9 19 0.428 8.13 38.4 10 22 0.355 7.46 42.3 11 23 0.288 6.62 46.1 12 25 0.230 5.75 50.0 N m = N o e -∆E/kT In the case of degenerate levels such as rotational levels eacj J level is 2J+1 degenerate we get N m = N o e-∆E/kT J 2J+1 e -∆E/kT N m /N o F(J)
14
0 1 2 3 4 5 6 7 J 2B 4B 6B 8B 10B 12B 14B 16B0 Boltzmann
15
http://en.wiki pedia.org/wi ki/Boltzmann _constant Boltzmann
16
0 1 1.000 1.00 3.84 1 3 0.981 2.94 7.69 2 5 0.945 4.73 11.5 3 7 0.893 6.25 15.4 4 9 0.828 7.45 19.2 5 11 0.754 8.29 23.1 6 13 0.673 8.75 26.9 7 15 0.590 8.85 30.8 8 17 0.507 8.62 34.6 9 19 0.428 8.13 38.4 10 22 0.355 7.46 42.3 11 23 0.288 6.62 46.1 12 25 0.230 5.75 50.0 N m = N o e -∆E/kT In the case of degenerate levels such as rotational levels eacj J level is 2J+1 degenerate we get N m = N o e-∆E/kT J 2J+1 e -∆E/kT N m /N o F(J)
17
0 1 2 3 4 5 6 7 J 2B 4B 6B 8B 10B 12B 14B 16B0 Boltzmann
18
Boltzmann Population with Degeneracy
19
0 1 1.000 1.00 3.84 1 3 0.981 2.94 7.69 2 5 0.945 4.73 11.5 3 7 0.893 6.25 15.4 4 9 0.828 7.45 19.2 5 11 0.754 8.29 23.1 6 13 0.673 8.75 26.9 7 15 0.590 8.85 30.8 8 17 0.507 8.62 34.6 9 19 0.428 8.13 38.4 10 22 0.355 7.46 42.3 11 23 0.288 6.62 46.1 12 25 0.230 5.75 50.0 N m = N o e -∆E/kT In the case of degenerate levels such as rotational levels each J level is 2J+1 degenerate we get N m = N o (2J+1)e -∆E/kT J 2J+1 e -∆E/kT N m /N o F(J)
20
0 1 2 3 4 5 6 7 J 2B 4B 6B 8B 10B 12B 14B 16B0 Boltzmann
21
C≡O
22
CO Rotational Spectrum PROBLEM
23
Separation Vibration Rotation
24
ABC H Atom
25
H Atom Spectrum A
26
Positronium - +
27
Einstein Coefficients nn mm
28
Harry Kroto 2004 H 21 cm Line
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.