Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sparsity Technologies & DAMA-UPC Aules d’empresa 2011 DEX Use Cases.

Similar presentations


Presentation on theme: "Sparsity Technologies & DAMA-UPC Aules d’empresa 2011 DEX Use Cases."— Presentation transcript:

1 Sparsity Technologies & DAMA-UPC Aules d’empresa 2011 DEX Use Cases

2 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Index  Information Retrieval  OCP  GrafMED  ConceptBrowser  DifPubMed  SocialMedia  RecerCaixa  Reviewers Recommender

3 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Index  Information Retrieval  OCP  GrafMED  ConceptBrowser  DifPubMed  SocialMedia  RecerCaixa  Reviewers Recommender

4 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC  Goal  Apply DEX in a well-known social network  Perform different kinds of information retrieval queries Link analysis Social-oriented queries Pattern recognition Keyword search  IMDB Use Case  www.imdb.com www.imdb.com  Inherent network-structure of the data Information Retrieval IMDB

5 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC  Source Data  10 entities, 12 relationships  More than 845,000 titles and 2,000,000 people  Auxiliary tables with casts, roles, genres, extra movie & person info  Dex Graph  Built in less than 21 minutes  More than 25 million nodes  Less than 1.14 GB of DEX data Information Retrieval IMDB

6 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Information Retrieval IMDB Link AnalysisSocial NetworksPattern RecognitionKeyword Search Focus relationships between the entities of a network relationship between different groups of nodes with the same affinity identify the potential result graphs that match a certain pattern where the user is assumed not to know anything about the organization of the data Examples get all the information of a movie find the full relationships network of all the partners of an actor or actress find all the directors that have worked with the same actress in ‘X’ different movies made in a period of time of ‘Y’ years return all the context information of all the entities containing the keyword ‘X’ Results (stress settings) 845,573 movies exploded at an average speed of 0.01 sec. per movie one large result graph with 1,052 nodes connected by 552,826 edges 4,705 directors selected at an average speed of 0.09 sec. per result 3,308 graphs from a potential of 24,547,488 at an average speed of 0.005 sec.

7 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Index  Information Retrieval  OCP  GrafMED  ConceptBrowser  DifPubMed  SocialMedia  RecerCaixa  Reviewers Recommender

8 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC  Requesters  Spanish Patrimonial Control Office  Goal  Detect fraud in real patrimonial transactions  Data Model  People, societies  Patrimonial transactions  Procedure  An expert defines a fraudulent pattern  graph pattern  Graph pattern allows user to find fraudulent people/societies OCP

9 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Index  Information Retrieval  OCP  GrafMED  ConceptBrowser  DifPubMed  SocialMedia  RecerCaixa  Reviewers Recommender

10 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC  Requesters  Catalan Institute of Oncology  Goal  Support application to identify patterns (rules) in the procedures applied to cancer patients  Data Model  50000 patients from the Bellvitge hospital (1994 – 2006)  67 types of tumors  Why DEX?  Querying capability, multiple data sources, navigational characteristics  Larger amount of data, with hundreds of thousands of patients GrafMED

11 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Index  Information Retrieval  OCP  GrafMED  ConceptBrowser  DifPubMed  SocialMedia  RecerCaixa  Reviewers Recommender

12 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC  Requesters  Havas Media  Goal  Support application for brainstorming tasks.  Finds not obvious conceptual relations among words and concepts.  Data  440.882 concepts  117.278 groups of synonymic words  116.988 words  10.922.306 relations among words and concepts  Why DEX?  Querying capability, navigational characteristics ConceptBrowser

13 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Index  Information Retrieval  OCP  GrafMED  ConcetpBrowser  DifPubMed  SocialMedia  RecerCaixa  Reviewers Recommender

14 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC  Requesters  Havas Media  Goal  Bibex extension focused on medical researchers.  Identifies researcher social networks, scientific evolution on a particular medication and researchers influence.  Data  1.502.599 publications  2.136.184 researchers  194.991 medications  3.437.476 references DifPubMed

15 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Index  Information Retrieval  OCP  GrafMED  ConcetpBrowser  DifPubMed  SocialMedia  RecerCaixa  Reviewers Recommender

16 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC  Requesters  Havas Media  Goal  Tool for analyzing information propagation in any social network.  Identifies useful information such as how fast and how far information is propagated in time.  Used Social Networks  Youtube – U sers, videos, comments, etc.  Enron – Users, e-mails, etc.  Flickr – Users, photos, comments.  Orkut – Users, media(photos, music, etc.), messages, etc.  Twitter – Users, messages, etc.  Vi.vu – Medical professionals, non-professional users, questions, answers, references, etc. SocialMedia

17 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC SocialMedia Results Influent Persons Distribution

18 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Index  Information Retrieval  OCP  GrafMED  ConcetpBrowser  DifPubMed  SocialMedia  RecerCaixa  Reviewers Recommender

19 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC  Motivation  Selected in the Call for Applications for Research Grants Tool (Recercaixa).  Goal  Support tool for exploring and recommending audiovisual content.  Oriented to be applied in primary and secondary education.  Data Contribution  Catalan public broadcaster Televisió de Catalunya (TV3) RecerCaixa

20 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Index  Information Retrieval  OCP  GrafMED  ConcetpBrowser  DifPubMed  SocialMedia  RecerCaixa  Reviewers Recommender

21 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC  Requesters  Ministry of Science and Innovation of the Spain Government (MICINN)  Goal  Tool for identifying and recommending experts in a particular topic.  Experts in a topic People highly contributing to documents related to a topic  Data Model  Document contributors  Documents Reviewers Recommender

22 Nom e la presenatació o altra info (opcional) Sparsity Technologies & DAMA-UPC Thanks for your attention Any questions? DAMA-UPC. DATA MANAGEMENT (UPC) Departament d'Arquitectura de Computadors Edifici C6-S103. Campus Nord. Jordi Girona, 1-3. 08034 - Barcelona www.dama.upc.edu SPARSITY-TECHNOLOGIES Jordi Girona, 1-3, Edifici K2M 08034 Barcelona info@sparsity-technologies.com http://www.sparsity-technologies.com


Download ppt "Sparsity Technologies & DAMA-UPC Aules d’empresa 2011 DEX Use Cases."

Similar presentations


Ads by Google