Download presentation
1
EEG/MEG source reconstruction
Jérémie Mattout / Christophe Phillips / Karl Friston Wellcome Dept. of Imaging Neuroscience, Institute of Neurology, UCL, London
2
Estimating brain activity from scalp electromagnetic data
Sources MEG data Source Reconstruction ‘Equivalent Current Dipoles’ (ECD) ‘Imaging’ EEG data
3
Components of the source reconstruction process
Source model ‘ECD’ ‘Imaging’ Forward model Registration Inverse method Data Anatomy
4
Components of the source reconstruction process
Source model Registration Forward model Inverse solution
5
Source model Compute transformation T Apply inverse transformation T-1
Individual MRI Templates Apply inverse transformation T-1 Individual mesh input functions output Individual MRI Template mesh spatial normalization into MNI template inverted transformation applied to the template mesh individual mesh
6
Registration Rigid transformation (R,t) Individual MRI space
fiducials Individual sensor space fiducials Rigid transformation (R,t) input functions output sensor locations fiducial locations (in both sensor & MRI space) individual MRI registration of the EEG/MEG data into individual MRI space registrated data rigid transformation
7
head tissue properties
Foward model Individual MRI space Model of the head tissue properties Compute for each dipole p + K n Forward operator functions input single sphere three spheres overlapping spheres realistic spheres output sensor locations individual mesh forward operator K BrainStorm
8
Inverse solution (1) - General principles
General Linear Model 1 dipole source per location Cortical mesh Y = KJ+ E [nxt] [nxp] [pxt] n : number of sensors p : number of dipoles t : number of time samples Under-determined GLM J : min( ||Y – KJ||2 + λf(J) ) ^ Regularized solution data fit priors
9
Inverse solution (2) - Parametric empirical Bayes
2-level hierarchical model Y = KJ + E1 J = 0 + E2 E2 ~ N(0,Cp) E1 ~ N(0,Ce) Gaussian variables with unknown variance Gaussian variables with unknown variance Sensor level Source level Ce = 1.Qe1 + … + q.Qeq Cp = λ1.Qp1 + … + λk.Qpk Linear parametrization of the variances Q: variance components (,λ): hyperparameters
10
+ Inverse solution (3) - Parametric empirical Bayes Qe1 , … , Qeq
Bayesian inference on model parameters Model M Qe1 , … , Qeq Qp1 , … , Qpk + J K ,λ Inference on J and (,λ) Maximizing the log-evidence F = log( p(Y|M) ) = log( p(Y|J,M) ) + log( p(J|M) ) dJ data fit priors Expectation-Maximization (EM) J = CJKT[Ce + KCJ KT]-1Y ^ E-step: maximizing F wrt J MAP estimate M-step: maximizing of F wrt (,λ) Ce + KCJKT = E[YYT] ReML estimate
11
Inverse solution (4) - Parametric empirical Bayes
Bayesian model comparison Model evidence Relevance of model M is quantified by its evidence p(Y|M) maximized by the EM scheme Model comparison Two models M1 and M2 can be compared by the ratio of their evidence B12 = p(Y|M1) p(Y|M2) Bayes factor Model selection using a ‘Leaving-one-prior-out-strategy‘
12
Inverse solution (5) - implementation
input functions output iterative forward and inverse computation ECD approach preprocessed data - forward operator individual mesh priors - compute the MAP estimate of J compute the ReML estimate of (,λ) interpolate into individual MRI voxel-space inverse estimate model evidence
13
EEG/MEG preprocessed data
Conclusion - Summary Data space MRI space Registration Forward model EEG/MEG preprocessed data PEB inverse solution SPM
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.