Presentation is loading. Please wait.

Presentation is loading. Please wait.

Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:

Similar presentations


Presentation on theme: "Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:"— Presentation transcript:

1 Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics: gamma ray bursts Particle physics: cold dark matter search Particle physics: cold dark matter search

2 Nature’s Particle Accelerators Electromagnetic Processes:Electromagnetic Processes: –Synchrotron Emission E   (E e /m e c 2 ) 3 BE   (E e /m e c 2 ) 3 B –Inverse Compton Scattering E f ~ (E e /m e c 2 ) 2 E iE f ~ (E e /m e c 2 ) 2 E i –Bremmstrahlung E  ~ 0.5 E eE  ~ 0.5 E e Hadronic CascadesHadronic Cascades – p +   ± +  o +…  e ± +  +  +… – p + p  ± +  o +…  e ± +  +  +…

3 High Energy Gamma-Ray Astrophysics Typical Multiwavelength Spectrum from High Energy  -ray source [ Energy Emitted] [ Photon Energy]

4 Spinning Neutron Star Fills Nebula with Energetic Electrons => Synchrotron Radiation and Inverse Compton Scattering

5 Active Galactic Nuclei Massive Black Hole Accelerates Jet of Particles to Relativistic Velocities => Synchrotron Emission and Inverse Compton and/or Proton Cascades

6 Challenge I: Acceleration R B shock velocity (V = e  = v/c   = boosted energy from cosmic accelerator 

7 Energy in extra-galactic cosmic rays ~ 3x10 37 erg/s or 10 44 erg/yr per (Mpc) 3 3x10 39 erg/s per galaxy 3x10 44 erg/s per active galaxy 2x10 52 erg per gamma ray burst 1 TeV = 1.6 erg

8 brightest known sources match IF equal energy in protons and electrons (photons) AGN (steady):  ~ few requires L>10 47 erg/s Few, brightest AGN GRBs (transient):  ~ 300 requires L>10 51 erg/s Average L  ~10 52 erg/s equal energy in neutrinos?

9 some definitions flux F = dN/dE (particles cm -2 s -1 ) fluency f = E dN/dE (erg cm -2 s -1 ) luminosity L = f x 4  d 2 (erg s -1 )

10 Point Sources Signal: Background (atmos. ’ s): For 10 -- 1000 TeV:

11 Cosmological sources: Most Powerful Cosmological sources: AGN (Steady) GRBs (~100s transient) 1.~1 km 2 detector 2.Same UHE CR “ suspects ”

12 Challenge II: Propagation (GZK) >10 20 eV proton: E <100 Mpc Bright AGN (Radio galaxies)- too far  GRBs Does the spectrum support GZK?

13 Model Fly’s Eye fit for Galactic heavy (<10 19 eV): J G ~E -3.50 X-Galactic protons: Generation spectrum (shock acceleration): Generation rate: Redshift evolution ~ SFR [EW 95]

14 Model vs. Data X-G Model: [Bahcall & EW 03] Ruled out 7  55

15 Conclusions are Robust

16 CR Conclusions Yakutsk, Fly’s Eye, HiRes: Consistent with XG protons: + GZK Robust; Consistent with GRB model predictions AGASA (25% of total exposure): Consistent below 10 20 eV Excess above 10 20 eV: 2.2+/-0.8 8 observed New source/ New physics/ 25% energy Local inhomogeneity over-estimate Stay tuned for Auger (Hybrid) ??

17 diffuse flux flux = velocity x density flux = c/4  x density, for isotropic flux --> in energy density E dN/dE dE = c/4  x  E E dN/dE = A E  cm -2 s -1 sr -1 (  = -1)

18 diffuse background Signal: Background (atmos. ’ s): Waxman-Bahcall bound ~ 1km 2 detector --> 50 events/yr

19 n Flux Bound Observed J CR (>10 19 eV) For Sources with   p < 1: Strongest know z evolution (QSO, SFR): collect ’s beyond GZK [EW & Bahcall 99, Bahcall & EW 01]

20   p for known sources pp ’’ n ++ e+e+ e-e- 

21 Antares Nemo

22 Neutrinos from GRB: an example

23 Gamma-ray Bursts M on ~1 Solar Mass BH Relativistic Outflow e - acceleration in Collisionless shocks e - Synchrotron MeV  ’s L  ~10 52 erg/s  ~300 [Meszaros, ARA&A 02]

24 GammaRayBurst Photons and protons Photons and protons coexist in internal shocks External shocks External shocks

25 1997 BATSE: 1991- May 2000 1969

26 NUMEROLOGY L  = 10 52 erg/s R 0 = 100 km E  = 1 MeV  t = 1-10 msec  = 300 t H = 10 10 years dE/dt = 4x10 44 erg Mpc -3 yr -1 P detected = 10 -6 E 0.8 (in TeV)  p  = 10 -28 cm2 for p+   n+  = 0.2 = 0.2

27 GRB1FRAMES Fireball Frame Observer Frame  ~ 10 2 - 10 3 E =  E' ~ 1 MeV R =  R' d  R = c  t = R 0 with R 0 = R' (t = 0) observed 1 msec RRRR RR' c v

28 grb kinematics R 0 100 km cos  = v/c  = [1- ] -1/2 v 2 __ c 2 10 2 - 10 3  t = = (R - Rcos  )  R __ c 1_c1_c R __ c R __ 2c v __ c v 2 __ c 2 ( 1 - ) =  t obs  E obs  E R __ 2c 1 __  2 R   v c ~-~- ~-~- ~-~- ~-~- ~-~-

29 GRB3 Pion (neutrino) production when protons and photons coexist p  n  + neutrinos n0n0n0n0 gamma rays E' p > m 2  - m 2 p _________ 4E'  4E'  E p > 1.4 x 10 4 TeV E = 1/4 E p 1/20 E p 0.7 PeV ~_~_

30 Fraction of GRB energy converted into pion (neutrino) production f  =  x p   15% -1 p  = n   p  -1 p  = n   p  e synchro/ICompton  (L) (L) (L) (L) p pions (L CR )  R' ___ p  p  ~_ GRB4fireball

31 GRB2 Photon Density in the Fireball n  = = U'  ___ E'  ___  L   t/  L   t/ ______ 4  R' 2  R' R' =  2 c  t  R' =  c  t note: for  = 1 (no fireball) optical depth of photons is photons is  opt = = R 0 n   Th ~ 10 15 R 0 __ Th Th

32 U___ E c__ 4  1___ E E dE__dt GRB 5  = = ( 1/2 f  t H ) charged  only N events = P survived P detected  N events = P survived P detected  20 km -2 yr -1 L CR LLLL ~_ ~_ Neutrino flux from GRB fireballs c__ 4 

33 GRB 6 NUMEROLOGY L  = 10 52 erg/s R 0 = 100 km E  = 1 MeV  t = 1-10 msec  = 300  > = 1/5  > = 1/5  p  = 10 -28 cm 2 t H = 10 10 years dE/dt = 4x10 44 erg Mpc -3 yr -1 P detected = 10 -6 E 0.8 (in TeV)

34 Search for HE from GRB

35 Correlations to GRB 88 BATSE bursts in 1997 Background cuts can be loosened considerably  high signal efficiency Combined data give sensitivity ~ prediction! ~ prediction!

36 Marriage of Astronomy and Physics Astronomy: new window on the Universe!Astronomy: new window on the Universe! “You can see a lot by looking” “You can see a lot by looking” Physics:Physics: search for dark matter search for topological defects and cosmological remnants search for monopoles measure the high-energy neutrino cross section (TeV-scale gravity?) (TeV-scale gravity?) cosmic ray physics: 150 atmospheric nus/day array with EeV sensitivity array with EeV sensitivity test special and general relativity with new precision

37 Relic density – simple approach Decoupling occurs when  < H We have

38 The MSSM – general The Lightest Supersymmetric Particle (LSP) Usually the neutralino. If R-parity is conserved, it is stable. The Neutralino –  Gaugino fraction 1.Select MSSM parameters 2.Calculate masses, etc 3.Check accelerator constraints 4.Calculate relic density 5.0.05 <   h 2 < 0.5 ? 6.Calculate fluxes, rates,... Calculation done with http://www.physto.se/~edsjo/darksusy/

39 LEP  h 2 < 0.025  h 2 > 1 Low sampling The m  -Z g parameter space Higgsinos Mixed Gauginos

40 WIMP search strategies Direct detectionDirect detection Indirect detection: –neutrinos from the Earth/Sun –antiprotons from the galactic halo –positrons from the galactic halo –gamma rays from the galactic halo –gamma rays from external galaxies/halos –synchrotron radiation from the galactic center / galaxy clusters –...Indirect detection: –neutrinos from the Earth/Sun –antiprotons from the galactic halo –positrons from the galactic halo –gamma rays from the galactic halo –gamma rays from external galaxies/halos –synchrotron radiation from the galactic center / galaxy clusters –... Direct detectionDirect detection Indirect detection: –neutrinos from the Earth/Sun –antiprotons from the galactic halo –positrons from the galactic halo –gamma rays from the galactic halo –gamma rays from external galaxies/halos –synchrotron radiation from the galactic center / galaxy clusters –...Indirect detection: –neutrinos from the Earth/Sun –antiprotons from the galactic halo –positrons from the galactic halo –gamma rays from the galactic halo –gamma rays from external galaxies/halos –synchrotron radiation from the galactic center / galaxy clusters –...

41 Direct detection - general principles WIMP + nucleus  WIMP + nucleus Measure the nuclear recoil energy Suppress backgrounds enough to be sensitive to a signal, or... Search for an annual modulation due to the Earth’s motion around the Sun

42 Edelweiss June 2002 Most likely DAMA point. Excluded at 99.8% CL

43 Direct detection – current limits Spin-independent scattering Spin-dependent scattering Direct detection experiments have started exploring the MSSM parameter space!

44 Neutralino capture and annihilation Sun  Earth Detector Freese, ’86; Krauss, Srednicki & Wilczek, ’86 Gaisser, Steigman & Tilav, ’86 Silk, Olive and Srednicki, ’85 Gaisser, Steigman & Tilav, ’86    velocity distribution  scatt  capture  annihilation interactions int.  int. interactions hadronization

45 Indirect detection for cyclists e.g. 10 4 m 2 -telescope searches for 500 GeV WIMP > LHC limit 1.  - flux 300 km/s   =   v =   =   v = 2.4 x 10 4 [ ]cm -2 s -1 2. Solar cross section   = n  =  (  N)   = n  =  (  N) = [1.2x10] 57 10 -41 cm 2 M  __ m N (G F m N 2 ) 2 ~ G F 2 ___ m Z 2 M Z 2 ___ m H 4 500 GeV ________ m z 500 GeV ________ m z 0.4 GeV cm -3 = 8 x 10 -4 [ ] cm -3

46 N  = capture rate = annihilation rate _  WW  250 GeV 500 GeV 4. Number of muon-neutrinos N  = 2 x 0.1 N  N  = 2 x 0.1 N  Leptonic BR~0.1 N  =     = 3 x 10 20 s -1 3. Capture rate by the sun

47 5.   = = 2 x 10 -8 cm -2 s -1 1 A.U. 5.5 x 10 23 cm -3 6. # events = area x   x  ice x   x R  10 4 m 2   = 10 -38 cm 2 = 2.5 x 10 -36 cm 2   = 10 -38 cm 2 = 2.5 x 10 -36 cm 2 E___GeV R  = 5m = 625m (E  0.5 E ) R  = 5m = 625m (E  0.5 E ) E  ___GeV ~_ N  ____ 4  d 2 # events = 10 per year

48 AMANDA limit – 10 strings only Baikal

49 DirectDetection ( Zeppelin4/Genius ) Black: out Green: yes Blue: no IceCubevs

50 MSSM parameter space Future probed regions I Direct detection Genius/Cresst Earth, km 3 Sun, km 3 IceCubeIceCube

51 Limits:  flux from the Earth/Sun EarthSun

52 Flux from Earth/Sun and future GENIUS/CRESST limits EarthSun


Download ppt "Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:"

Similar presentations


Ads by Google