Download presentation
Presentation is loading. Please wait.
Published byArnold Snow Modified over 9 years ago
1
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science guerino@mazzola.ch www.encyclospace.org Les mathématiques de l‘interprétation musicale: Champs vectoriels d‘interprétation Les mathématiques de l‘interprétation musicale: Champs vectoriels d‘interprétation
2
The Topos of Music Geometric Logic of Concepts, Theory, and Performance www.encyclospace.org in collaboration with Carlos Agon, Moreno Andreatta, Gérard Assayag, Jan Beran, Chantal Buteau, Roberto Ferretti, Anja Fleischer, Harald Fripertinger, Jörg Garbers, Stefan Göller, Werner Hemmert, Michael Leyton, Mariana Montiel, Stefan Müller, Thomas Noll, Joachim Stange-Elbe, Oliver Zahorka October 2002 1300pp, ≈ 150 1300pp, ≈ 150 ¤
3
Fields
4
√ H E L E e pEpE pepe √E√E √ E (I 1 ) √ E (I k ) I1I1 IkIk X T(E) = (d √ E /dE) -1 [ q /sec]he l x = √ (X)
5
P-Cells Product fields: Tempo-Intonation field E H S(H) EH EH Z(E,H)=(T(E),S(H)) T(E)
6
(e(E),d(E,D) = e(E+D)-e(E)) T(E) P-Cells Parallel fields: Articulation field E D ED E Z(E,D) = T(E,D) = (T(E),2T(E+D) T(E))
7
Root Fundament P-Cells Work with Basis Basis parameters E, H, L, and corresponding fields T(E), S(H), I(L) Pianola Pianola parameters D, G, C cell hierarchy A cell hierarchy is a Diagram D in Cell such that there is exactly one root cell the diagram cell parameter sets are closed under union and non-empty intersection T S I I ¥ S T ¥ I T ¥ S T ¥ S T ¥ I T ¥ I ¥ S T ¥ I ¥ S TT
8
Typology T TT T Z( T, ) Stemma mother daughter granddaughter
9
Emotions, Gestures, Analyses Typology Big Problem: Describe typology of shaping operators! w(E,H,…) H E ???? ???? ??!! ??!!
10
Calculations RUBATO ® software: Calculations via Runge-Kutta-Fehlberg methods for numerical ODE solutions
11
Typology Tempo Operators T(E)w(E)T w (E) = w(E).T(E) Deformation of the articulation field hierarchy TT TwTw T TwTw ww T TwTw? Q w (E,D) = w(E) 0 w(E+D)—w(E) w(E+D) w = Q w (E,D).Z Q w = J( √ w ) -1 „w-tempo“
12
Typology RUBATO ® : Scalar operator Linear action Q w on ED-tangent bundle Direction of field changes Numerical integration control
13
Inverse Theory Lie type Restriction Affine transport
14
Inverse Theory Stefan Müller: EspressoRubette
15
Inverse Theory Lie type Restriction Restriction Sum Affine transport
16
Affinetransportparameters Lie operator parameters:weights,directions Output fields Z. fiber(Z.) Inverse Theory Roberto Ferretti
17
Inverse Theory
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.