Download presentation
Presentation is loading. Please wait.
Published byDulcie Merritt Modified over 9 years ago
1
On the Turbulence Spectra of Electron Magnetohydrodynamics E. Westerhof, B.N. Kuvshinov, V.P. Lakhin 1, S.S. Moiseev *, T.J. Schep FOM-Instituut voor Plasmafysica ‘Rijnhuizen’, Associatie Euratom-FOM Trilateral Euregio Cluster, Postbus 1207, 3430 BE Nieuwegein, The Netherlands * Institute of Space Research of the Russian Academy of Sciences 117810, Moscow, Russia 1 On leave from RRC Kurchatov Institute, Moscow, Russia 26 th EPS Conference on Controlled Fusion and Plasma Physics, 14-18 June 1999, Maastricht, The Netherlands
2
Overview 2D electron magnetohydrodynamics EMHD ideal statistical equilibrium spectra scaling symmetries and spectral laws of decaying turbulence finite density perturbations invariants cascade directions energy partitioning a temporal decay law
3
magnetic field representation: B = B 0 ((1+b) e z + e z ) generalized vorticity = b d e 2 2 b + (1-n eq (x)/n 0 ) generelized flux = d e 2 2 evolution equations 2D EMHD with inertial skin depth d e = c/ pe with = 1 + ( ce / pe ) 2 [f,g] = e z ( f g)
4
2D EMHD Finite Density Perturbations finite is the origin of the parameter = 1 + ( ce / pe ) 2 divergence of e momentum balance Poisson’s law.................. and Ampere’s law..............
5
2D EMHD The Invariants Energy.......... generalized Helicity f arbitrary function of generalized Flux... g arbitrary function of EbEb EE magnetic kinetic + internal
6
application of equilibrium statistical mechanics requires 1 finite dimensional system 2 Liouville theorem (conservation of phase space volume) achieved by truncated Fourier series representation of fields ‘detailed’ Liouville theorem for all k x k y invariants of the truncated system: only quadratic ones energy E ; helicity H; mean square flux F Ideal Equilibrium Spectra
7
The Canonical Equilibrium Distribution Equilibrium probability density = (1/Z) exp( E H F ) Lagrange multipliers (‘inverse temperatures’) fixed by E tot H tot F tot and k min k max Equilibrium Spectra E(k x,k y ) = (4 k 2 + 2 (1+d e 2 k 2 )) / D H(k x,k y ) = 2 (1+d e 2 k 2 ) (1+ d e 2 k 2 ) / D F(k x,k y ) = 4 (1+d e 2 k 2 ) / D D = 4 k 2 + (1+d e 2 k 2 )) 2 (1+d e 2 k 2 ) (1+ d e 2 k 2 ) convergence requires D > 0, and > 0
8
d e = 0.1 d e = 0.01 squared flux cascade Ideal Equilibrium Spectra Examples of Equilibrium Spectra Energy Flux Helicity = = 10, = 1 = = 10, = 1000 energy cascade
9
Ideal Equilibrium Spectra Energy Partitioning Ratio of energies E b and E : small scales, kd e >> 1, E b / E = (1 + d e 2 / ) large scales, kd e << 1, E b / E = (1 + / k 2 ) numerical calculations of decaying turbulence E b (k x,k y ) E (k x,k y ) (1+ d e 2 k 2 ) k 2 + (1+d e 2 k 2 )) k 2 (1+d e 2 k 2 ) = E b / E << 1 initially: fast evolution to near equipartition E b / E > 1 initially: ratio increases on dissipation time scale
10
Ideal Equilibrium Spectra Energy Partitioning spectra for E b and E from simulations of decaying turbulence
11
Scale Invariance and Spectra both kd e > 1: 2D EMHD invariant for transformations r’ = r, t’ = 1 t, ’ = 1+ , ’ = 2+ kd e << 1 : E b 2 (magnetic) perturbations on scale r : b(r) = r 1+ F with F function of invariant(s) ’ = 3 +1 = 1/3 thus: b(r) b(r) r 4/3 and E(k) 2/3 k 7/3 kd e >> 1 : E v 2 (kinetic) perturbations on scale r : v(r) = r F with F function of invariant(s) ’ = 3 1 = +1/3 thus: v(r) v(r) r 2/3 and E(k) 2/3 k 5/3 a la Kolmogorov: only invariant is energy dissipation rate agrees with Biskamp et al. (1996) (1999)
12
Scale Invariance and Spectra Energy Decay Law integrating over inertial range one obtains dE / dt = E 3/2 solution numerical results agree data from case d e = 0.3
13
Summary and Conclusions applied equilibrium statistics to ideal 2D EMHD confirm normal energy cascade confirm inverse mean square flux cascade, but kd e < 1 studied energy partitioning evolution to equipartition only for E b < E initially derived spectral laws from scaling symmetries of 2D EMHD confirm Biskamp et al.: kd e >> 1, E (k) k 5/3 kd e << 1, E (k) k 7/3 obtained temporal decay law, confirmed by simulations
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.