Presentation is loading. Please wait.

Presentation is loading. Please wait.

Study and Performance Comparison of H.264/AVC, Dirac and AVS China Part 7 EE5359 Project Fall 2010 Touseef Khan 1000676051.

Similar presentations


Presentation on theme: "Study and Performance Comparison of H.264/AVC, Dirac and AVS China Part 7 EE5359 Project Fall 2010 Touseef Khan 1000676051."— Presentation transcript:

1 Study and Performance Comparison of H.264/AVC, Dirac and AVS China Part 7 EE5359 Project Fall 2010 Touseef Khan 1000676051

2 General Video Coding and Decoding Process [1]  An optional preprocessing step, the sender might choose to preprocess the video using format conversion or enhancement techniques.  The encoder encodes the video and represents the video as a bit stream.  The decoder decodes the video which gets displayed after an optional post-processing step which might include format conversion, filtering to suppress coding artifacts, error concealment, or video enhancement

3 H.264/AVC [1]  H.264/MPEG-4 AVC is a block-oriented motion-compensation-based codec standard developed by the ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts Group (MPEG). It was the product of a partnership effort known as the Joint Video Team (JVT).  H.264/AVC provides gains in compression efficiency of up to 50% over a wide range of bit rates and video resolutions compared to previous standards.  Supports various applications such as video broadcasting, video streaming, and video conferencing over fixed and wireless networks and over different transport protocols and results better than MPEG-2.

4 Dirac[24] Hybrid motion-compensated video codec developed by BBC Research, BBC. Uses modern techniques – discrete wavelet transforms, arithmetic coding. Dirac is a general-purpose video compression family suitable for everything from internet streaming to HDTV and electronic cinema. It offers good quality at low bit rates, leading to lower costs. It offers good quality with low delay - ideal for live broadcast applications in studios and outside broadcasts.

5 AVS China Part 7 (AVS Mobile)[13]  Audio-video coding standard (AVS) is a working group of audio and video coding standard in China, which was established in 2002.  AVS is a set of integrity standard system – system, video, audio and media copyright management.  AVS China has a coding efficiency similar to that of H.264 except that it has a lower computational complexity.  AVS M is the 7 th part of the video coding standard developed by the AVS Workgroup of China which aims for mobile systems and devices.  In AVS M, a Jiben Profile out of the 10 different profiles of AVS.  AVS follows a layered structure for the data and this representation is seen in the coded bit stream.

6 H.264 Layers[1]  The video coding layer (VCL) defines the efficient representation of the video.  The network adaptation layer (NAL) converts the VCL representation into a format suitable for specific transport layers or storage media.

7 H.264 Encoder[3]

8 H.264 Decoder[3]

9 Dirac Encoder and Decoder[13]

10 AVS-M Encoder[18]

11 AVS-M Decoder[18]

12 H.264/AVC introduces the following changes:[1]  In order to reduce the block-artifacts an adaptive deblocking filter is used in the prediction loop. The deblocked macroblock is stored in the memory and can be used to predict future macroblocks.  The memory contains one video frame in previous standards, H.264/AVC allows storing multiple video frames in the memory.  In H.264/AVC a prediction scheme is used also in Intra mode that uses the image signal of already transmitted macroblocks of the same image in order to predict the block to code.  The discrete cosine transform (DCT) used in former standards is replaced by an integer transform.

13 H.264 Profiles[1]  A profile is defined as a subset of the entire bit stream syntax or in other terms as a subset of the coding tools.  There are three profiles in the first version: Baseline, Main and Extended. There are four High profiles defined in the fidelity range extensions.

14 AVS China Profiles[13]

15 Dirac – Wavelet Transforms[8] More efficient than block transforms with still images. Operates on entire picture. Logarithmic frequency decomposition into sub-bands at each stage, the filter produces for sub-bands called Low-Low (LL), Low-High (LH), High-Low (HL) and High-High (HH). The LL band is iteratively encoded to gain the required data. Wavelet transforms have been proven to provide a more efficient technique than block transforms with still images and is currently used in JPEG2000. Horizontal and vertical filtering for 2D signals.

16 Parametric Comparison Algorithmic Element H.264/AVC [1] Dirac[9] AVS China Part 7[14] Intra Prediction 4x4spatial,16x16 spatial, I-PCM 4x4 spatial 9 modes, simple 4x4 intra prediction and direct intra prediction Transform 4×4 integer DCT, 8×8 integer DCT 4×4 wavelet transform 4x4 ICT without scaling in decoder In-Loop Filters Deblocking None Deblocking Entropy Coding CAVLC(Context Adaptive Variable Length) CABAC(Context Adaptive Binary Arithmetic) VLC VLC 2D-VLC.E.g.:-Golomb code P-Frame Type Single reference Multiple references Single reference Multiple references Single reference Multiple references (maximum of 2 reference frames) Motion compensation block size 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, 4×4 4×4 16×16, 16×8, 8×16, 8×8

17 CIF and QCIF formats [3] Fig(a) : Common Intermediate Format(CIF) 4:2:0 chroma sampling Fig (b): Quadrature Common Intermediate Format (QCIF) 4:2:0 chroma sampling

18 Performance Analysis of Dirac Video Codec Original File: News.yuv Format : 4:2:0

19 Quality Factor (QF) Compressed File Size (KB) Bit rate (KBps) Y-PSNR(dB)Y-MSEY-SSIMCompression Ratio 0184.5823.0236326.680.6933206:1 3328.15227.965104.7130.8544116:1 55914.98932.36438.0270.92563:1 816642.42641.9494.1840.984922:1 1037395.38846.6991.4010.99310:1 DIRAC Codec QCIF sequence : news_qcif.yuv Height:176, Width: 144 Total no. of frames : 300 Frames used : 100 Original File size : 3713KB Frame Rate = 25 fps

20 Video Quality at different values of Quality Factor (QF) QF = 0 QF = 5 QF = 10 DIRAC codec File: news.yuv Format: QCIF

21 Quality Factor (QF) Compressed File Size (KB) Bit rate (KBps) Y- PSNR(dB) Y-MSEY-SSIMCompression Ratio 0389.47325.383189.730.78390:1 38120.6630.67556.1040.8973183:1 515940.56735.24819.5730.94693:1 8524134.4442.6113.5920.980228:1 101379352.9546.671.410.9910:1 DIRAC Codec CIF sequence : news_cif.yuv Height:352, Width: 288 Total no. of frames : 300 Frames used : 100 Original File size : 14,850KB Frame Rate : 25 fps

22 Video Quality at different values of Quality Factor (QF) QF = 0 QF = 5 QF = 10 DIRAC codec File: news.yuv Format: CIF

23 DIRAC Codec - File : News.yuv ; Format : 4:2:0

24

25 Original File: Foreman.yuv Format : 4:2:0

26 Quality Factor (QF) Compressed File Size (KB) Bit rate (KBps) Y-PSNR(dB)Y-MSEY-SSIMCompression Ratio 0246.112523.4299.550.6837155:1 34310.98427.73110.480.831686:1 58120.67332.45837.2070.917946:1 825665.41841.0195.1830.979514.5:1 10570145.76646.2591.55070.9936.5:1 DIRAC Codec QCIF sequence : foreman_qcif.yuv Height:176, Width: 144 Total no. of frames : 300 Frames used : 100 Original File size : 3713KB Frame Rate = 25 fps

27 Video Quality at different values of Quality Factor (QF) QF = 0 QF = 5 QF = 10 DIRAC codec File: foreman.yuv Format: QCIF

28 Quality Factor (QF) Compressed File Size (KB) Bit rate (KBps) Y- PSNR(dB) Y-MSEY-SSIMCompression Ratio 06215.66924.891212.5150.7253239.5:1 311629.63930.15463.2520.8486128:1 524161.67934.58422.810.914662:1 8918234.8641.3924.7560.97216:1 102343599.6346.1891.5760.98996:1 DIRAC Codec CIF sequence : foreman_cif.yuv Height:352, Width: 288 Total no. of frames : 300 Frames used : 100 Original File size : 14,850KB Frame Rate : 25 fps

29 Video Quality at different values of Quality Factor (QF) QF = 0 QF = 5 QF = 10 DIRAC codec File: foreman.yuv Format: CIF

30 DIRAC codec - File : Foreman.yuv ; Format : 4:2:0

31

32 Performance Analysis of H.264 Video Codec Original File: News.yuv Format : 4:2:0

33 QPCompressed File Size (KB) Bit rate (KBps) Y-PSNR(dB)Y-MSEY-SSIMCompression Ratio 0887226.9266.7670.01380.9994:1 1035891.39551.3570.47940.99710:1 255213.17639.4737.3990.97871:1 4081.97228.089101.740.8534464:1 5030.681221.78434.990.62041237:1 H.264 Codec QCIF sequence : news_qcif.yuv Height:176, Width: 144 Total no. of frames : 300 Frames used : 100 Original File size : 3713KB Frame Rate = 25 fps

34 Video Quality at different values of Quantization Parameter (QP) QP = 0QP = 25 QP = 50 H.264 codec File: news.yuv Format: QCIF

35 QPCompressed File Size (KB) Bit rate (KBps) Y- PSNR(dB) Y-MSEY-SSIMCompressio n Ratio 03763963.1367.630.01130.9994:1 101569401.6551.4550.46880.9969:1 2515138.62440.6485.6440.97698:1 40235.82630.07964.3480.8847645:1 5092.0623.978262.1930.73791650:1 H.264 Codec CIF sequence : news_cif.yuv Height:352, Width: 288 Total no. of frames : 300 Frames used : 100 Original File size : 14,850KB Frame Rate : 25 fps

36 Video Quality at different values of Quantization Parameter (QP) QP = 0QP = 25 QP = 50 H.264 codec File: news.yuv Format: CIF

37 H.264 codec - File :News.yuv ; Format : 4:2:0

38

39 Original File: Foreman.yuv Format : 4:2:0

40 QPCompressed File Size (KB) Bit rate (KBps) Y-PSNR(dB)Y-MSEY-SSIMCompression Ratio 01518388.4869.1820.00790.9992.4:1 10673172.2551.5630.45730.99755.5:1 259323.79439.1347.9990.970840:1 40163.89628.60990.2640.8457232:1 5051.147521.821430.8740.6743:1 H.264 Codec QCIF sequence : foreman_qcif.yuv Height:176, Width: 144 Total no. of frames : 300 Frames used : 100 Original File size : 3713KB Frame Rate = 25 fps

41 Video Quality at different values of Quantization Parameter (QP) QP = 0QP = 25 QP = 50 H.264 codec File: foreman.yuv Format: QCIF

42 QPCompressed File Size (KB) Bit rate (KBps) Y-PSNR(dB)Y-MSEY-SSIMCompression Ratio 068181745.1969.8040.006860.9992:1 10327483851.6140.45190.99654.5:1 2529675.65439.2067.8680.956650:1 404711.82130.160863.1530.8412316:1 50184.58423.953263.7370.6963825:1 H.264 Codec QCIF sequence : foreman_cif.yuv Height:352, Width: 288 Total no. of frames : 300 Frames used : 100 Original File size : 14,850KB Frame Rate = 25 fps

43 Video Quality at different values of Quantization Parameter (QP) QP = 0QP = 25 QP = 50 H.264 codec File: foreman.yuv Format: CIF

44 H.264 codec - File : Foreman.yuv ; Format : 4:2:0

45

46 Performance Analysis of AVS China-M Video Codec Original File: News.yuv Format : 4:2:0

47 QPCompressed File Size (KB) Bit rate (KBps) Y-PSNR(dB)Y-MSEY-SSIMCompression Ratio 0564173.0253.9180.26590.99846.5:1 1514544.21645.5881.80990.992325.5:1 314012.21636.63614.2190.96593:1 45154.49328.92483.9540.8706247.5:1 6382.29419.431747.140.5363464:1 AVS China-M Codec QCIF sequence : news_qcif.yuv Height:176, Width: 144 Total no. of frames : 300 Frames used : 100 Original File size : 3713KB Frame Rate = 25 fps

48 Video Quality at different values of Quantization Parameter (QP) QP = 0QP = 31 QP = 63 AVS China-M codec File: news.yuv Format: QCIF

49 Quality Factor (QF) Compressed File Size (KB) Bit rate (KBps) Y- PSNR(dB) Y-MSEY-SSIMCompression Ratio 02581792.6454.170.25090.99795.75:1 15499153.13545.5851.8110.98729.75:1 3112437.91438.04710.2760.9635120:1 455215.930.70655.7040.8919285.5:1 63309.15620.188627.540.6015495:1 AVS China-M Codec CIF sequence : news_cif.yuv Height:352, Width: 288 Total no. of frames : 300 Frames used : 100 Original File size : 14,850KB Frame Rate : 25 fps

50 Video Quality at different values of Quantization Parameter (QP) QP = 0QP = 31 QP = 63 AVS China-M codec File: news.yuv Format: CIF

51 AVS China-M codec - File : News.yuv ; Format : 4:2:0

52

53 Original File: Foreman.yuv Format : 4:2:0

54 QPCompressed File Size (KB) Bit rate (KBps) Y-PSNR(dB)Y-MSEY-SSIMCompression Ratio 01133347.8853.6580.28230.99853:1 1531295.62344.8942.1240.990512:1 317121.7336.03816.3190.949352:1 45257.46429.16179.4990.855148.5:1 6392.60520.357603.590.5187412.5:1 AVS China-M Codec QCIF sequence : foreman_qcif.yuv Height:176, Width: 144 Total no. of frames : 300 Frames used : 100 Original File size : 3713KB Frame Rate = 25 fps

55 Video Quality at different values of Quantization Parameter (QP) QP = 0QP = 31 QP = 63 AVS China-M codec File: foreman.yuv Format: QCIF

56 QPCompressed File Size (KB) Bit rate (KBps) Y-PSNR(dB)Y-MSEY-SSIMCompression Ratio 052861623.5253.7240.2780.99792.8:1 151240380.81344.6422.250.984612:1 3122368.26736.53814.5440.930966.5:1 458325.36830.82454.2150.8456179:1 633510.64321.1508.710.5667424:1 AVS China-M Codec QCIF sequence : foreman_cif.yuv Height:352, Width: 288 Total no. of frames : 300 Frames used : 100 Original File size : 14,850KB Frame Rate = 25 fps

57 Video Quality at different values of Quantization Parameter (QP) QP = 0QP = 31 QP = 63 AVS China-M codec File: foreman.yuv Format: CIF

58 AVS China-M codec - File : Foreman.yuv ; Format : 4:2:0

59

60 PSNR(dB) vs. Bitrate(KBps) File : News.yuv ; Format: QCIF 4:2:0

61 PSNR(dB) vs. Bitrate(KBps) File : Foreman.yuv ; Format: QCIF 4:2:0

62 PSNR(dB) vs. Bitrate(KBps) File : News.yuv ; Format: CIF 4:2:0

63 PSNR(dB) vs. Bitrate(KBps) File : Foreman.yuv ; Format: CIF 4:2:0

64 MSE vs. Bitrate (KBps) File : News.yuv ; Format: QCIF 4:2:0

65 MSE vs. Bitrate(KBps) File : Foreman.yuv ; Format: QCIF 4:2:0

66 File : News.yuv ; Format: CIF 4:2:0 MSE vs. Bitrate(KBps)

67 File : Foreman.yuv ; Format: CIF 4:2:0

68 MSU Video Quality Measurement Tool[20]

69 Conclusions It can be concluded from the results that H.264 stands out in terms of performance with respect to compression ratio, quality and applications over AVS China part 7 and Dirac. The graphs and tabulations clearly show that the PSNR, MSE and SSIM[21] of the video sequences improve as the bit rate increases, while the bit rate is varied using the quantization parameter.

70 Future Work Further work can be carried out in studying and comparing video coding standards: H.264/AVC, Dirac and AVS China Part 7(AVS Mobile) for all profiles i.e. main, baseline and high profiles. Test video sequences of SD and HD formats can also be used at various bit rates for better analysis of performance of the video coding standards.

71 References: 1. J.Ostermann et al, “Video coding with H.264/AVC: Tools, Performance, and Complexity”, IEEE Circuits and Systems Magazine, vol. 4, Issue:1, pp. 7 – 28, Aug. 2004. 2. D. Marpe, T. Wiegand and G.J. Sullivan, “The H.264/MPEG4 Advanced Video Coding Standard and its Applications”, IEEE Communications magazine, vol. 44, Issue: 8,pp: 134 –143, Aug. 2006. 3. S.Kwon, A. Tamhankar and K.R. Rao, “Overview of H.264 / MPEG-4 Part 10”, J. Visual Communication and Image Representation, vol. 17, pp.186-216, April 2006. 4. I. Richardson, “Vcodex White Paper: An overview of H.264”, www.vcodex.com. 5. I. Richardson, “The H.264 advanced video compression standard ”, Wiley, 2 nd edition,2010. 6. T. Wiegand and G.J. Sullivan, “The H.264/AVC Video Coding Standard [Standards in a Nutshell]”, IEEE Signal processing magazine, vol. 24, Issue: 2, pp. 148 – 153,March 2007. 7. H.264/AVC reference software: http://iphome.hhi.de/suehring/tml/download/http://iphome.hhi.de/suehring/tml/download/ 8. The Dirac web page: http://www.bbc.co.uk/rd/projects/dirac/technology.shtmlhttp://www.bbc.co.uk/rd/projects/dirac/technology.shtml 9. S.Issa and O.O.Khalifa, “Performance analysis of Dirac video codec with H.264/AVC”, International conference on computer and communication engineering, pp:1-6,Aug. 2010 10. K. Onthriar, K.K. Loo and Z.Xue, “Performance Comparison of Emerging Dirac Video Codec with H.264/AVC”, International Conference on Digital Telecommunications, pp. 22 – 22, Aug. 2006. 11. Dirac Specifications: http://diracvideo.org/download/specification/dirac-spec-latest.pdfhttp://diracvideo.org/download/specification/dirac-spec-latest.pdf

72 12. Dirac video download: http://diracvideo.org/download/http://diracvideo.org/download/ 13. K. R. Rao and D.N. Kim, “Current Video Coding Standards: H.264/AVC, Dirac, AVS China and VC-1”, IEEE 42nd Southeastern symposium on system theory (SSST), pp. 1-8,March 2010. 14. L.Fan et al,“Overview of AVS Video Standard”, IEEE International conference on multimedia and expo, pp. 423 - 426,vol. 1, June 2004. 15. S. Pasqualini et al, “Comparison of H.264/AVC, H.264 with AIF, and AVS based on different video quality metrics”, International conference on telecommunications, pp.190 – 195, May 2009. 16. AVS China software : ftp://159.226.42.57/public/avsdoc/avs_softwareftp://159.226.42.57/public/avsdoc/avs_software 17. L.Yu, S.Chen and J.Wang, “Overview of AVS-video coding standards”, Signal processing : Image communication, pp. 247-262,vol. 24, Issue: 4, Apr. 2009. 18. L.Fan, “Mobile Multimedia Broadcasting Standards”, ISBN: 978-0-387-78263-8, Springer US, 2009. 19. YUV Video Sequences: http://trace.eas.asu.edu/yuvhttp://trace.eas.asu.edu/yuv 20. MSU video quality measurement tool : http://compression.ru/video/quality_measure/video_measurement_tool_en.html http://compression.ru/video/quality_measure/video_measurement_tool_en.html 21. Z. Wang, E.P. Simoncelli and A.C. Bovik, “Multi-scale structural similarity for image quality assessment”, Proceedings of IEEE Asilomar Conference on Signals, Systems and Computers, (Asimolar), vol. 2, pp. 1398 -1402, Nov. 2003. 22. S Srinivasan, et al, “Windows media video 9: overview and applications”, Signal Processing: Image Communication, Vol. 19, Issue 9, pp. 851-875, Oct. 2004. 23. W.Gao and T.Huang, “AVS Standard -Status and Future Plan”, Workshop on Multimedia New Technologies and Application, Shenzhen, China, Oct. 2007. 24. A.Ravi ‘Performance analysis and comparison of the Dirac video codec with H.264 / MPEG-4 Part 10 AVC”.

73 25. Ravi and K.R. Rao, “Performance analysis and comparison of the Dirac video codec with H.264/ MPEG- 4, Part 10”, for the book "Advances in reasoning-based image processing, analysis and intelligent systems: Conventional and intelligent paradigms", 2011.

74 THANK YOU


Download ppt "Study and Performance Comparison of H.264/AVC, Dirac and AVS China Part 7 EE5359 Project Fall 2010 Touseef Khan 1000676051."

Similar presentations


Ads by Google