Download presentation
Presentation is loading. Please wait.
Published byChristina Jefferson Modified over 9 years ago
1
Ischemia-reperfusion injury (IRI)
2
Introduction 1955, Sewel tied up coronary of dog , loose suddenly ventricular fibrillation 。 Kane tied up left entricular branch of coronary of rat ECG no obvious change relieve deligation arrhythmic
3
1972 Flore kidney IRI 1978 Modry lung IRI 1981 Greenberg intestine IRI
4
Concept: based on ischemia injury of tissue and organs restoration of blood flow after transient or ischemia further reversible or irreversible cell damage ischemia reperfusion injury ( IRI ) 。
5
pH paradox ischemia acidosis, disorder of function and metbolism on cell severe IRI pH paradox calcium paradox pre-perfuse rat heart with no calcium perfusion for 2min perfuse calcium perfusion, cell release enzyme myofibril over-constract, electron signals abnormal , calcium paradox
6
Oxygen paradox Hypoxia liquid perfuse organ or culture without oxygen injury restore perfusion severe injury
7
Ⅰ. Cause of ischemia-reperfusion injur y and affecting factor coronary in spasm anti spasmotic thrombosis thrombolytic therapy 1. cause coronary by-pass operation on heart: no-reflow organ transplant
8
2 . Affecting factor small 5-10min: arrhythmia ⑴ ischemic animals 20-30min: ventricular time tremor big 20-40min: reversible injury animals 40-60min: irreversible injury diversity between small and big animal
9
Changes of ischemic perfuse: ATP 、 Ca 2 + 、 K +
10
⑵ collateral ( 侧枝 ) circulation : chronic ⑶ O 2 consumption rate [K + ], [Mg 2+ ] protection ⑷ electrolytes [Na + ], [Ca 2+ ] damage (5) condition of T, pressure,pH, Na +, Ca 2+ protection reperfusion T, pressure, Na +, Ca 2+ damage
11
Ⅱ. pathogenesis of ischemia-reperfusion injury 1. The role of free radical ⑴ kinds and concept of free radical free radical:
12
normal: O 2 +4e+4H + 2H 2 O O 2 → O - 2 H 2 O 2 OH H 2 O e - e - + 2H + e - + H + H2OH2O
13
oxygen free radical: O - 2 、 OH kinds of (active oxygen: 1 O 2 、 H 2 O 2 OH ) free radical lipid free radical: L 、 LO 、 LOO others: Cl 、 CH 3 、 NO
14
(2) mechanism of increase of oxygen free radical ① formation of oxygen free radical nature oxidation of Hb, Cyt C O 2 O ‾∙ 2 H 2 O 2 OH ∙ H 2 O H 2 O oxidation of enzyme : xanthine oxidase(XO) O ‾∙ 2 xanthine uric acid O 2 O ‾∙ 2 Mitochondria: O ‾∙ 2
15
normal : O 2 +4e+4H + → H 2 O+ATP abnormal :O 2 +e → O · - 2 +e +2H + → H 2 0 2 +e+H + → OH · +e+H + → H 2 0 Cyt P 450 O insert C—H C—OH O +2 H + H 2 O O ‾∙ 2 H 2 O 2
16
Produce of OH· SOD O · - 2 + O · - 2 +2H + H 2 O 2 +O 2 O · - 2 +H 2 O 2 OH · + OH · +O 2 Fenton Haber-Weiss : SOD Fe 2+ Fe 3+ O · - 2 H 2 O 2 OH · + OH -
17
( 2 ) lipid free radical concept : types : L ·, LO · LOO · ( 3 ) non- lipid free radical: NO· 、 ONOO - They are balance between produce and clearance
18
Haber-Weiss reaction(Fenton reaction ) OH ∙ Fe 3+ + O ‾∙ 2 Fe 2+ + O 2 H 2 O 2 Fe 3+ + OH - + OH ∙ O ‾∙ 2 + H 2 O 2 Fe 盐 O 2 + OH - + OH ∙ O ‾∙ 2 + OH ∙ 1 O 2 + OH - CI+ + H 2 O H 2 O + OCl - 1 O 2 OCl - + H 2 O 2 1 O 2 + Cl - + H 2 O photosensitive substance O 2 1 O 2 effects: WBC
19
2O ‾∙ 2 + 2H + SOD H 2 O 2 + O 2 H 2 O 2 O 2 Other oxidase 2H + H 2 O 2 application disinfection
20
② increase of oxygen free XD Xanthine oxidase (XO) : Ischemia ATP [Ca 2+ ] i xanthine xanthine dehydrogenase oxidase
21
Xanthine oxidase pathway ATP ADP AMP Adenine nucleoside Ca 2+ Hypoxanthine nucleoside Hypoxanthine xanthine+ O ‾∙ 2 +H 2 O O 2 Uricacid + O ‾∙ 2 +H 2 O Fe 2+ OH ∙ XD xo XO ischemia reperfusion
22
The effects of leucocyte reperfusion : oxygen consumption of infiltrated WBC ↑ 70-90% O 2 NADPH +2O 2 2 O · - 2 +NADP + +H + NADH+O 2 +2H + H 2 O 2 +NAD + +H + NADPH 氧化酶 NADH 氧化酶
23
Phenomenon of increase in production of oxygen radicals 1.repiratory burst O ‾∙ 2 \ OH ∙ (oxygen burst) 2.hypoxia mitochondria repiratory chain O ‾∙ 2 Ca 2+
24
(3) damage action of free radical ① membrane lipid peroxidation cellular membrane permeability lipid peroxidation of membrane [Ca 2+ ] i calcium overload calcium overload
25
calcium overload lipid cross-linked calcium overload inhibition of Na + -pump and Ca 2+ -pump [Na + ] i, [Ca 2+ ] i membrane lipid phospholipase C PGs, LTs (花) peroxidation phospholipase D TXA 2 damage of mitochondria membrane ATP
27
② inhibition of protein function enzymes : stop heart beat IR GSH(blood) injury of protein channels: ③ destruction of nuclear acid DNA- DNA, DNA-protein :
28
(1) mechanism of calcium overload Ca 2+ input ① abnormal exchange of Na + /Ca 2+ ATP Na + -pump [Na + ] i exchange of Na +(out) /Ca 2+ (in) (convert) hypoxia exchange acidosis of Na +(in) /H +(out) [Na + ] i normal exchange of Na +(in) /Ca 2+(out) ,
29
ischemia catecholamine α 1 – receptor H + Ca 2+ Na + Ca 2+ IP 3 and DG PKC Ca 2+ Normal:βreceptor α1α1 Ca 2+ S R
30
catecholamine β – receptor [Ca 2+ ] i L Ca 2+ - channel Ca 2+ pre-apply anti-Ca 2+ drugs GOOD ② injury of biomembrane damage of cellular membrane normal glycocalyx Ca 2+ bridge Cellular membrane β Cellular membrane
31
No Ca 2+ glycocalyx reperfusion Ca 2+ glycocalyx Ca 2+ lipid break up PLA 2 Cellular membrane
32
Damage of mitochondria and sarcoplasmic Damage of mitochondria ATP Damage of Sarcopasmic Ca 2+ - ATPase calcium overload
33
(2) Damage mechanism of calcium overload ① phospholipase injury of cell membrane and cell organ ② output of Ca 2+ consumption of ATP ③ Ca 2+ + phosphate production of ATP deposition ④ [Ca 2+ ] i XO free radical ⑤ [Ca 2+ ] i
34
3. role of leukocyte In 1984 , Mullane found that conorary was obstructed 60min , Engler , Ischemia phospholipase LTs Congregate of leukocyte Expression of adhesion molecule Release inflammatory factor Production of free radical no-reflow
35
5. Role of neutrophil : 1)Injury of microvessle microcirculation : caliber contracte, dialate permability 2) Injury of cells
36
Ⅲ. Changes of function and metabolism 1. changes of heart in ischemia-reperfusion injury arrhythmia heart function cardiac output free radical energy calcium overload damage of mitochondria reperfusion sweep of ADP , AMP produce ATP myocardial destruction of membrane structural rupture and dissolve of myofibril damage damage of mitochondrion
37
2. changes of brain in ischemia-reperfusion injury ATP Na + -pump cellular edema Hypoxia of cells cellular acidosis Excitability transmitter inhibitive transmitter cAMP↑ cGMP↓ activate free fatty acid ↑ lipid peroxidation ↑
38
Hisconstructure Edema, necrosis 3. Others Colone, kidney
39
Ⅳ. Principles of prevention and treatment 1. restoring normal perfusion of tissue in time low temperature; low pressure; low flow; low natrium(sodium); low pH; low calcium
40
2. improve the metabolism of the tissues ATP; cytochrome C; 3. sweep away free radical: VitE: lose e FR FR (lipid) VitC: clear OH ∙ (water) β-cartenoids: clear 1 O 2 GSH
41
( 2 ) enzyme scavenger : 2 O ‾∙ 2 +2H + H 2 O + O 2 H 2 O 2 H 2 O+ O 2 4. relieve of calcium overload Ca 2+ ion blok agent SOD CAT
42
5. CoQ Inhibit L (lipid free radical) 2L+ CoQ 2LH+ CoQ protein enzyme inhibitor: ulinastatin
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.