Presentation is loading. Please wait.

Presentation is loading. Please wait.

Conversion from one number base to another Binary arithmetic Equation simplification DeMorgan’s Laws Conversion to/from SOP/POS Reading equations from.

Similar presentations


Presentation on theme: "Conversion from one number base to another Binary arithmetic Equation simplification DeMorgan’s Laws Conversion to/from SOP/POS Reading equations from."— Presentation transcript:

1 Conversion from one number base to another Binary arithmetic Equation simplification DeMorgan’s Laws Conversion to/from SOP/POS Reading equations from Truth Tables Boolean expression to Karnaugh Map Minimization using Karnaugh Maps Minterm and Maxterm Equations Minimization using don’t cares Logic to Boolean Expression conversion Word problems Determining how many gates and inputs a boolean expression has Determining Prime Implicants and Essential Prime Implicants Logical completeness Review for Exam 1

2 Conversion from one number base to another 356.89 10 to Hexadecimal (2 digits)

3 Conversion from one number base to another

4 Binary arithmetic 23 6 | 141 -12 21 -18 3

5 Equation simplification Simplify and convert to SOP (A’ + B + C’)(A’ + C’ + D)(B’ + D’) Y = (AB’ + (AB + B)) B + A

6 Equation simplification (X + Y)(X + Z) = (X + YZ) X + XY = X X + X’Y = X + Y X + XY = X

7 DeMorgan’s Laws G = {[(R + S + T)’ PT(R + S)’]’T}’

8 DeMorgan’s Laws G = {[(R + S + T)’ PT(R + S)’]’T}’ = [(R + S + T)’ PT(R + S)’] + T’ = [ R’S’T’ PT(R’S’)] + T’ = R’S’T’PTR’S’ + T’ = R’S’P(T’T) + T’ = T’

9 Conversion to/from SOP/POS (X + YZ) = (X + Y)(X + Z)

10 Reading equations from Truth Tables ABCDF 00001 00010 00100 00110 01001 01010 01101 01111 10000 10010 10100 10110 11001 11010 11101 11110

11 ABCDF 00001A’B’C’D’ 00010 00100 00110 01001A’BC’D’ 01010 01101A’BCD’ 01111A’BCD 10000 10010 10100 10110 11001ABC’D’ 11010 11101ABCD’ 11110

12 Boolean expression to Karnaugh Map AB CD00011110 00 01 11 10 AB + C’D + A’B’C + ABCD + AB’C

13 Boolean expression to Karnaugh Map AB CD00011110 001 011111 11111 10111 AB + C’D + A’B’C + ABCD + AB’C

14 Minimization using Karnaugh Maps AB CD00011110 001 011111 11111 10111 AB + C’D + A’B’C + ABCD + AB’C AB + C’D + B’C

15 Minterm and Maxterm Equations F(ABCD) =  m (0,2,4,7,9,12,14,15) AB CD00011110 00 01 11 10 BC’D’ + BCD + ABC + A’B’D’ + AB’C’D

16 Minterm and Maxterm Equations F(ABCD) =  m (0,2,4,7,9,12,14,15) AB CD00011110 00111 011 1111 1011 BC’D’ + BCD + ABC + A’B’D’ + AB’C’D

17 Minimization using don’t cares AB CD00011110 00 01 11 10 A’B’ + AD F(ABCD) =  m (0,1,2,11,13) +  d (3,9,12,15)

18 Minimization using don’t cares AB CD00011110 001x 0111x 11xx1 101 A’B’ + AD F(ABCD) =  m (0,1,2,11,13) +  d (3,9,12,15)

19 Logic to Boolean Expression conversion

20 F = (XY + W)Z + V F = (B+C)A + BC

21 Word problems

22 Determining how many gates and inputs a boolean expression has levels gates inputs transistors inputs/gate max levels gates inputs transistors inputs/gate max F = (XY + W)Z + V Z = A’B’C’ + ABC + BCD +B’C’D’

23 Determining how many gates and inputs a boolean expression has 4 levels 4 gates 8 inputs 16 transistors 2 inputs/gate max 2 levels 5 gates 16 inputs 32 transistors 4 inputs/gate max F = (XY + W)Z + V Z = A’B’C’ + ABC + BCD +B’C’D’

24 Determining Prime Implicants and Essential Prime Implicants AB CD00011110 00111 01111x 11xx1 101

25 Determining Prime Implicants and Essential Prime Implicants AB CD00011110 00111 01111x 11xx1 101 6 prime implicants 3 essential prime implicants

26 Logical completeness Inverter AND gate OR gate

27 Logical completeness Inverter AND gate NAND NAND gate Inverter OR gate


Download ppt "Conversion from one number base to another Binary arithmetic Equation simplification DeMorgan’s Laws Conversion to/from SOP/POS Reading equations from."

Similar presentations


Ads by Google