Download presentation
Presentation is loading. Please wait.
Published byHugh Banks Modified over 9 years ago
2
Nucleon resonances via H,D( ) reactions GeV Experiments at GeV Hall at LNS 2001-02: GeV Hall, 2003: STB tagger II, SCISSORS II, STB special e-beam 2004-05: Experiments with 0.6 < E < 1.15 GeV 2006: FOREST construction 1. C,Cu( ) S 11 (1535) in nuclei; Phys. Lett. B639 (2006) 429 2. H( ) proton cross section; p→ p; Phys. Rev. C (2006) in press 3. D( ) neutron cross section; S 11, D 15, pentaquark; submitted soon 4. H,D( 0 ) Nucleon resonances 5. C,Si,Cu( ) E < 0.8 GeV, threshold region
3
Heavy baryon (with c/b/t quarks) 3 quarks in short distance one gluon exchange field r < 0.3 fm r ~ 1 fm Light baryon (with u/d/s quarks) 3 dynamical (dressed) quarks effective chiral field (Goldstone boson exchange) diquark-quark clusterization? Perturbed region Non-perturbed region Baryon density Baryon internal energy Why light baryon? Existence of pentaquark state constituent quark model chiral quark soliton model
4
Spontaneous Chiral symmetry breaking current-quarks (~5 MeV) Constituent-quarks (~350 MeV) Particles Quasiparticles
5
Quark- Model Nucleon Three massive quarks 2-particle-interactions: confinement potential gluon-exchange meson-exchage (non) relativistisc chiral symmetry is not respected Succesfull spectroscopy (?)
6
Chiral Soliton Nucleon Mean Goldstone-fields (Pion, Kaon) Large N c -Expansion of QCD ????
7
Quantum numbers Quantum # Coherent :1p-1h,2p-2h,.... Quark-anti-quark pairs „stored“ in chiral mean-field Coupling of spins, isospins etc. of 3 quarks mean field non-linear system soliton rotation of soliton Natural way for light baryon exotics. Also usual „3-quark“ baryons should contain a lot of antiquarks
8
S 11 D 15 ? P 11, P 13 S 11 D 15 ? P 11, P 13 H,D(g,h) reactions so far reported Nucleon Energy Spectrum
9
Electron Beam from 300MeV LINAC 1.2 GeV STB Ring electron Synchrotron Tagged Photon Beam GeV- Experimental Hall 17 m GeV experiments at LNS
10
Pseudosphere 55 cm Backward Block(29) Backward Block(29) Forward Block(74) Forward Block(74) Solid Target Chamber Incident γ Plastic Counters Invariant Mass Analysis M 2 = 2E E (1 - cos ) Energy :E = E i Position :R = R i E i / E i SCISSORS II :206 pure CsI Crystals (1.57 str = 12.5% of 4 ) 16.2 X 0 for Forward 148 crystals 13.5 X 0 for Backward 58 crystals + N → + X Hydrogen/Deuterium Solid Target t = 8 cm (N T ~ 4×10 23 /cm 2 ) Identification of meson = (39.43±0.26)% → Decay Channel → Decay Channel Experimental setup
11
M Gate : 440—620 MeV Empirical Fitting Function: F(M )= L(M ) + B(M ) L(x)=l 0 exp[ l 1 (l 2 - x) + exp( -l 1 (l 2 - x))] B(x)=exp(b 0 +b 1 x + b 2 x 2 ) Invariant Mass Double Differential Yield d 2 N/dp dcos (at +N CMS)
12
p→ p p→ N channel open Momentum Cut P *(3b max) p→ p 抽出 d /d d /dp
13
(p→p)(p→p) ( p → N) H( , )H reaction For E < 1.15 GeV (LNS) ~ (CLAS, ELSA) no third S 11 (Saghai and Li) (E ) ~ ( MAID) S 11 (1535) largest S 11 (1650) destructive P 11 (1720) very small + direct (Born, , ex.) E > 1 GeV p→ N not negligible ( N) ~ ( p) at 1.1 GeV MAID
14
p→ p process Direct 3 Body S 11 P 33 New observation: p→ *→ → N ~ 50% N(938) N(1535) L=0 (1720) L=0 (1670) L=0 (1750) L=0 (1232) (1116) (1192) 3/2 + 1/2 + 1/2 - 3/2 - 1/2 +
15
p→ N, p→ 0 p phase space Jido, Oka, Hosaka Prog. Theor. Phys.106,873 (2001) N(938)-S11(1535): parity partner chiral transformation scheme N N* N g N*N* /g NN =+ or -? S 11 (1535) only is not enough ( p→ N) = (2 ~ 3)× ( p→ 0 N) p→ 0 N process Doring, Oset, Stottman Phys. Rev. C73,045209 (2006) Chiral unitary approach for meson-baryon scattering D 33 (1700), S 11 (1535), D 13 (1520) Jido et al. Doring et al.
16
D( ) reaction ? Original motivation: =2/3, =-1/3 →difference in magnetic transitions between proton and neutron proton target: only S 11 (1535), S 11 (1650) neutron target: D 15 (1675) should be enhanced Present interest: antidecuplet state N* (S=0) originally assigned to P 11 (1710) reanalisys N scattering PR C69(04)035208 W=1680, ~ 10 MeV GRAAL preliminary n coin. Data W=1675 MeV sharp state
17
The anti-decuplet 1539 < 25 MeV 1862 ~ 1646 ~ 1754 Reevaluation by Diakonov and Petrov, 04 Modified analysis pN scattering Arndt et al. PRC69(04)035208 n measurement in D( n)p Kunznetsov et al. preprint (05) J p :1/2 + or 1/2 - ? Width: very small < 10 MeV? Other members: S=0 sector? strongly observed in n >> p sharp resonance
18
CB-ELSA (IX International Workshop On Meson Photoproduction, Crakow,Poland,9.-13,June 2006) N→ N exclusive measurement Total Cross Section GRAAL (hep-ex0601002) n→ n exclusive measurement Differential Cross Section cos ~-0.7 proceedings, preliminary Results n measurement: quasi-free kinematics (advantage) incomplete arrangement of neutron detectors →low statistics, not high E resolution, spectrum deformed inclusive measurement d→ pn: whole kinematics, complex analysis (disadvantage) high statistics, high E resolution, spectrum not deformed W, , J p, transition strength,….. may be obtained precisely.
19
Comparison with proton data ・ broader momentum distribution ~ 20 MeV increased due to the deuteron target ・ however, good separation between d→ pn, d→ pn momentum distributions in d→ pn
21
angular distributions in c.m. frame of photon incident on nucleon at rest (‘c.m.’)
22
Total cross section vs E d→ pn ’p’→ p ( d)- ( ’p’) Narrow resonance! rough estimate peak at E =1020 MeV apparent width E ~ 80 MeV
23
Effects of nucleon motion in the deuteron FWHM =75 MeV solid line : F(p N ) open circles: CD-Bonn Hulthen Wave Function F(p N ) =p N 2 /((p N 2 + 2 )(p N 2 + 2 )) 2 =45.7 MeV =260 MeV cos Angular Distribution E=1 GeV n cos 1 = 0.5 =10MeV (18MeV in E =60 MeV( E ~100MeV)
24
Analysis: isobar model +impulse approx. ; neglect p-n interference and f.s.i ; on shell cross section result of MAID for p→ p ; result of the isobar model similar to the MAID calculation Direct term (Born and and exchange): from MAID Resonances: Mass N A 1/2 A 3/2 D13(1520) 1520 120 0.06 -59 -139 S11(1535) 1541 191 50 varied S11(1650) 1638 114 7.9 varied D15(1675) 1665 150 17 varied F15(1680) 1681 130 0.06 29 -33 D13(1700) 1700 100 26 0.0 -3.0 P11(1710) 1721 100 36 varied P13(1720) 1720 150 3.0 varied + narrow P 11 or S 11
25
Angular distributions compared with calculations P 11 at 1670 MeV, = 7.5 MeV S 11 at 1660 MeV, = 8.5 MeV,
26
Total cross section P 11 at 1670 MeV, = 7.5 MeV S 11 at 1660 MeV, = 8.5 MeV A 1/2 = 12.5 for P 11 = -12.5 for S 11 Anti-decuplet N* is established! 1/2 + or 1/2 -
27
S 11 (1535) S 11 (1650) Narrow P 11 D 15 (1675) P 11 (1710) P 13 (1720) Narrow S 11 neutron cross section Further measurement with FOREST n coincidence with good geometry Parity + or – need more statistics Branching ratio 0 channel: Miyahara channel Anti-decuplet in nuclei 7 Li( ) S 11 (1535) resonance molecular nature? Magnetic moment
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.