Presentation is loading. Please wait.

Presentation is loading. Please wait.

V6543210V6543210. V6543210V6543210 The wavefunctions of the Simple Harmonic Oscillator are Orthonormal.

Similar presentations


Presentation on theme: "V6543210V6543210. V6543210V6543210 The wavefunctions of the Simple Harmonic Oscillator are Orthonormal."— Presentation transcript:

1 V6543210V6543210

2 V6543210V6543210

3 The wavefunctions of the Simple Harmonic Oscillator are Orthonormal

4 Orthonormal wavefunctions

5 ∫ + ∞ - ∞ ψ v ” ψ v ’ dτ = δ v ” v ’ Orthonormal wavefunctions

6 ∫ + ∞ - ∞ ψ v ” ψ v ’ dτ = δ v ” v ’ Orthonormal wavefunctions Kronecker delta δ ij = 1 when i = j and 0 when i ≠ j

7 + + ∫ + ∞ - ∞ ψ v=0 ψ v =0 dτ = 0 Orthonormal wavefunctions ← – ∞ + ∞ →

8 V6543210V6543210

9 + – ∫ + ∞ - ∞ ψ v=1 ψ v =0 dτ = 0 Orthonormal wavefunctions ← – ∞ + ∞ →

10 V6543210V6543210

11 + + – ∫ + ∞ - ∞ ψ v=2 ψ v =0 dτ = 0 Orthogonal wavefunctions ← – ∞ + ∞ →

12 Anharmonic oscillator wavefunctions and probabilities

13

14

15

16

17

18

19 V6543210V6543210

20

21 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

22

23 x → ↑y↑y -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

24 x → ↑y↑y -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

25 x → ↑y↑y -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

26 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

27 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

28 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

29 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

30 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

31 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

32 x → ↑y↑y -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

33

34 x → ↑y↑y -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

35 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

36 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

37 x → ↑y↑y -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

38 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

39 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

40 x → ↑y↑y -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

41 x → ↑y↑y -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

42 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

43 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

44 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

45 x → -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

46 x → ↑y↑y -8 -6 -4 -2 0 2 4 6 8 12 10 8 6 4 2 0 y = x 2

47 http://en.wikipedia.org/wiki/File:Simple_harmonic_oscillator.gif

48 H + H E(r) r  0 Rotational levels Continuum wavefunction of a dissociating state

49 http://131.104.156.23/Lectures/CHEM_207/uv-vis.htm

50

51 http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc5.html

52

53

54

55

56

57 H + H r  E(r) The problem of how to make H 2 in Space H2H2

58

59

60

61

62 http://jchemed.chem.wisc.edu/JCEDLib/SymMath/collection/article.php?id=29

63 http://www.pci.tu-bs.de/aggericke/PC3e_osv/Kap_III/Molekuelschwingungen.htm

64


Download ppt "V6543210V6543210. V6543210V6543210 The wavefunctions of the Simple Harmonic Oscillator are Orthonormal."

Similar presentations


Ads by Google