Download presentation
Presentation is loading. Please wait.
Published byVictor Cory Johns Modified over 9 years ago
1
AP PSYCHOLOGY: UNIT V Introductory Psychology: Sensation
2
Sensation Vi sion, hearing, smell, taste, touch, pain & body position Similarities? Transduce stimulus energy into neural impulses More sensitive to change than to constant stimulation Provide us with information regarding our environment Differences? Each requires a different form of stimulus energy Each sends information to a different region of the brain for processing
3
PART ONE Sensation: Vision
4
Vision: The Stimulus Input The Stimulus Input Light energy (electromagnetic energy) Two physical characteristics help to determine our sensory experience of light Wavelength The distance from one peak to another Determines HUE (color) Amplitude Height of each wave’s peak Determines INTENSITY (brightness)
6
What makes up a light wave?
7
Shorter wavelength – bluish colors Longer wavelength – reddish colors Great amplitude – bright colors Small amplitude – dull colors
8
Vision: The Structure of the Eye Cornea Location/Structure The clear bulge on the front of the eyeball Function Protects the eye Bends light towards a central focal point in order to provide focus
9
Vision: The Structure of the Eye Pupil/Iris Location/Structure Adjustable opening in the center of the eye Surrounded by the iris (small ring of muscle tissue; color) Function Controls the amount of light that is able to enter the eye In bright conditions the iris expands, making the pupil smaller In dark conditions the iris contracts, making the pupil larger
10
Vision: The Structure of the Eye Lens Location/Structure A transparent structure that is located behind the pupil Function Focuses image on the back of the eye (retina) Accommodation The process by which the eye’s lens changes shape to help focus near or far objects on the retina
11
Vision: The Structure of the Eye Lens Problems Nearsightedness Also known as myopia Eyeball may be too long Image focused in front of the retina Farsightedness Also known as hyperopia Eyeball may be too short Image focused behind the retina
13
Vision: The Structure of the Eye Retina Location/Structure A multilayered, light-sensitive surface located at the back of the eyeball Function Contains cells that convert light energy into nerve impulses Includes three layers of cells Receptor cells (photoreceptors – cones & rods) Bipolar cells Ganglion cells
14
Vision: The Structure of the Eye ConesRods Number6 million120 million Location (in the retina) Center (fovea) Edge (periphery) Color sensitiveYesNo Sensitivity in dim light?LowHigh Ability to detect sharp detail (acuity)? HighLow Photoreceptor Cells
16
Vision: The Structure of the Eye Bipolar Cells Receives message from the photoreceptors Transmits message to the ganglion cells, which are then considered “activated” Ganglion Cells The axons of the ganglion cells converge to form the optic nerve
17
Light energy Rods & Cones Bipolar cells Ganglion cells
18
Vision: The Structure of the Eye Optic Nerve Location/Structure Nerve located at the back of the eyeball Function Sends visual information to the thalamus and then to the occipital lobes Where the optic nerve leaves the eye, there are no rods or cones, creating a blind spot
20
Vision: Visual Processing Feature Detectors Located in the visual cortex Nerve cells in the brain that respond to specific features Shape Angle Movement
21
Vision: Visual Processing Parallel Processing The processing of several aspects of a stimulus simultaneously The brain divides a visual scene into color, depth, form and movement
22
Visual Information Processing Feature Detection + Parallel Processing Color Motion Form Depth All processed separately but simultaneously
24
Vision: Color Vision Young-Helmholtz Trichromatic Theory (Hermann von Helmholtz & Thomas Young) The theory that the retina contains three different color receptors – red, green and blue When stimulated in combination, these receptors can produce the perception of any color Color Blindness? Dichromatic Color Vision Individuals lack one of three receptors; usually the red or green receptor
26
Vision: Color Vision Opponent-Process Theory of Color (Ewald Hering) The theory that opposing retinal processes enable color vision Red-Green Yellow-Blue Black-White Light that stimulates one half of the pair inhibits the other half For example, some cells are stimulated by green and inhibited by red, while others are stimulated by red and inhibited by green
27
PART TWO Sensation: Hearing
28
Hearing: The Stimulus Input The Stimulus Input Sound energy Two physical characteristics help to determine our sensory experience of sound Wavelength/Frequency The distance from one peak to another Determines PITCH Amplitude Height of each wave’s peak Determines LOUDNESS
29
Shorter wavelength – high-pitch Longer wavelength – low-pitch Great amplitude – loud sounds Small amplitude – soft sounds
32
Hearing: The Structure of the Ear Outer Ear Relevant Structures Pinna Function Channels sound waves through the auditory canal to the eardrum (tympanic membrane)
33
Hearing: The Structure of the Ear Middle Ear Relevant Structures (Eardrum) Hammer, Anvil, Stirrup Function Transmits the vibrations of the eardrum through a piston made of 3 tiny bones Hammer, anvil, stirrup These bones then transmit the message to the cochlea
34
Hearing: The Structure of the Ear Inner Ear Relevant Structures Cochlea Basilar Membrane Function The incoming vibrations cause movement in the cochlea’s oval window, which then creates motion in the cochlea’s fluid This motion causes movement in the basilar membrane and its hair cells Eventually, the hair cells trigger an impulse in adjacent nerve fibers; converge to form the auditory nerve
35
Hearing: The Structure of the Ear
36
Hearing: Pitch Perception Place Theory In hearing, the theory that links the pitch we hear with the place where the cochlea’s membrane is stimulated We hear different pitches because different sound waves trigger activity at different places along the cochlea’s basilar membrane Best explains our perception of high-pitched sounds
37
Hearing: Pitch Perception Frequency Theory In hearing, the theory that the rate of nerve impulses traveling up the auditory nerve matches the frequency of a tone, thus enabling us to sense its pitch Best explains our perception of low-pitched sounds
38
Why do we have 2 ears?
39
Hearing: Sound Localization
40
Hearing: Hearing Problems Conduction Hearing Loss Caused by damage to the mechanical system that conducts sound waves to the cochlea Sound vibrations cannot be passed from the eardrum to the cochlea Example Punctured eardrum Sensorineural Hearing Loss Caused by damage to the cochlea’s receptor cells or to the auditory nerves Also called nerve deafness
41
CONDUCTION DEAFNESS NERVE DEAFNESS
42
PART THREE Sensation: The Other Senses
43
Why do we study smell and taste together? SENSORY INTERACTION: the principle that one sense may influence another.
44
Sensation: Olfaction (Chemical Sense) Cilia Receptor cells that collect molecules of odor. Olfactory bulbs Receives an electrical signal and generates a “code” that is sent to the brain for interpretation. We can detect over 10,000 odors and odors have the power to evoke memories and feelings!
47
So can we smell a difference between men & women? Well….yes and no. Pheromones Chemicals excreted by humans and other animals that act as signals to, and elicit certain patterns of, behavior from members of the same species. Used by animals to mark off territories and to signal sexual receptivity. Karl Grammer Suggested that humans, although not consciously aware of it, respond to pheromones when it comes to mating.
48
Sensation: Gustation (Chemical Sense) We have bumps on our tongue called papillae. Taste buds are located on the papillae. Sweet, salty, sour, bitter and recently umami (savory). Bitterness detectors – critical because most poisons are bitter. Sour detectors – detect bad foods. Built-in salt and sugar needs for survival
49
Sensation: Skin (Somesthetic Sense) Receptors located in our skin Three types of touch Pressure Pain Temperature Gate control theory - Contends that there is an area in the spinal cord that can act like a “gate” and either inhibit pain messages or transmit them to the brain
50
Phantom Limb Pain Phantom limb pain is a frequent complication of amputation. Client complains of pain at the site of the removed body part, most often shortly after surgery.
51
Sensation: Kinesthetic (Somesthetic) Tell us where are body parts are Receptors are located in our Muscles Joints Tendons
52
Sensation: Vestibular (Somesthetic) Tells us where our body is orientated in space Our sense of balance Located in our semicircular canals in our ears
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.