Download presentation
Presentation is loading. Please wait.
Published byLogan Walker Modified over 8 years ago
1
I.Prochazka, CTU Prg Dec 2010 Ivan Procházka, Josef Blažej, Jan Kodet presented at : ELT meeting CTU in Prague, December 8, 2010 Czech Technical University in Prague, Czech Republic Working group presentation
2
I.Prochazka, CTU Prg Dec 2010 Working group Karel Hamal, professor, 1932 - 2007 founder and head of the group 1964 – 2007 Ivan Prochazka, applied physics head of the group since 2007 Bruno Sopko, solid state physics Josef Blazej, asistent Bc, Ms and PhD students Jan Kodet et al
3
I.Prochazka, CTU Prg Dec 2010 Czech Technical University in Prague – group activities Satellite Laser Ranging Picosecond Detector Technology Solid state photon counting devices SPADs Atmospheric / seeing studies Picosecond event timer Space related applications
4
I.Prochazka, CTU Prg Dec 2010 Satellite Laser Ranging Since 1972, world 3rd country
5
I.Prochazka, CTU Prg Dec 2010 Satellite Laser Ranging - background operation principle pulsed optical radar range precision 1.. 3 / mm / shot operational range 0 - 30 ooo km 25 technology installations on 5 continents Graz, Austria Provides the ultimate precision and accuracy ( ~ 3 mm) reference for most of space related measurements: altimetry, ITRF, geophysics, etc… Mature, well understood and proved technology & procedures
6
I.Prochazka, CTU Prg Dec 2010 World first Streak camera SLR ’80-’90 In house built Streak Camera linear / cicrcular scan Prague SLR Graz Two wavelength ground target 1.08 / 0.54 um, 420 fs RMS (!) published in SPIE 1988 Starlette in Graz, 5 mJ, 0.53 um first SLR on streak Jan.24 1991 published in SPIE 1991
7
I.Prochazka, CTU Prg Dec 2010 Multiple wavelength SLR ‘90 Atmospheric refraction index model verification Three wavelength 0.46 / 0.53 / 0.68 um NdYAG SHG + Raman in H2 anti / Stokes single photon echoes on SPAD routinely in Graz, ‘90, up to Lageos Eyesafe 1540 nm and green 532 nm single photon echoes Si + Ge SPADs SLR all satellites, NICT, Tokyo, Japan Mariny Murray model verification red blue green
8
I.Prochazka, CTU Prg Dec 2010 Portable Calibration Standard for SLR ‘90 To identify the SLR system mm biases Ultra-stable Pico Event Timer Space qalified modules by Thales-Dassault Epoch and frequency reference date analysis SW, set of meteo sensors,... Graz1997, ‘98, ‘99 Tokyo1997 Changchun 1997 WLRS Wett.1997 / 99 TIGO Wettzell1998 Zimmerwald1998 Herstmonceux1998 Potsdam 2001 Shanghai2001,’04,’06
9
I.Prochazka, CTU Prg Dec 2010 New timing principle, P. Panek Two channel device Jitter 800 fs / ch Non-linearity< 200 fs Stability < +/- 20 fs/hr Power < 25 Watts Sub- picosecond timing system Review of Scientific Instruments, Vol. 78, No1, 2007 U.S. Patent 7,057,978 B2, Jun. 2006. IEEE Trans. Instrum. Meas,, Vol. 57, No.11, Nov 2008 Review of Scientific Instruments, 2009
10
I.Prochazka, CTU Prg Dec 2010 Single Photon Detectors made by CTU Si,200 um,TE3 cooled, vacuum GaAs messa GaAsP, 350 um Active quenching and gating circuit Complete detector packages 130 mm
11
I.Prochazka, CTU Prg Dec 2010 Si SPADs for Space Applications CTU Prague & IKI Moscow MARS 92 (USSR / Russia, 1992-96)Photon counting laser rangefinder Mars baloon altimetry NASA Mars Polar Lander, (USA, 1998)Photon counting Lidar, Mars surface atmospheric studies S.P.Pershin et all, IKI Russia
12
I.Prochazka, CTU Prg Dec 2010 Laser Time Transfer in Space LTT – China since April 2007 China Compass-M1 / Beidou T2L2 CNES - France since June 2008 JASON-2 Time and frequency transfer using ps laser pulses in space Relying on available technology and ground segment Satellite Laser Ranging Superb precision and accuracy Navigation, deep-space, fundamental physics… E.Samain
13
I.Prochazka, CTU Prg Dec 2010 Laser Time Transfer recent missions Beidou-2 IGSO, Aug 1,2010 inclinated 55 o geostationary orbit LTT in common view possible China, Korea, Japan, Australia (~ 1000 s) Dedicated SLR network (PR China) On-board data reduction Operational since August 2010 GLONASS upgrade, Laser time transfer under consideration ? principle ? Dedicated SLR network prepared (global) single photon concept Galileo and Laser Time Transfer ? Europe should not “miss the train” Please, consider
14
I.Prochazka, CTU Prg Dec 2010 Future space mission and dreams Jupiter ESA NASA missions (EJSM), launch 2019 Laser time transfer, one way ranging 9 AU, ~ 10 E9 km distance 10 cm receiving optics sufficient (!) First radiation tests NASA labs, July 2010
15
I.Prochazka, CTU Prg Dec 2010 Ivan Procházka, Josef Blažej, Jan Kodet presented at : ELT meeting CTU in Prague, December 8, 2010 Czech Technical University in Prague, Czech Republic Report on scientific progress in ELT project on CTU in Prague
16
I.Prochazka, CTU Prg Dec 2010 Progress in ELT project Prague group ELT activities Design steps, conclusions - electronics - optics - mechanical Functional testing and test procedures Prague labs, Graz SLR Development of procedure for internal delay measuring Calibration of receiver Attenuation / sensitivity Radiation test report
17
I.Prochazka, CTU Prg Dec 2010 Electronic mechanical design direct “follow – on” of the previous versions CSRC Brno All space qualified components Except of ADCMP 553 fast comparator, see later Input optics
18
I.Prochazka, CTU Prg Dec 2010 Optical design Input optics Wavelength selection, attenuation, FoV Flat diffuse, Cyllinder, Hemisphere, etc Flat diffuse + shield Simple optical design No technology problems Signal strength well within 1 order of mag. for 10-60 deg. No impact on timing properties “Macrolon” input window
19
I.Prochazka, CTU Prg Dec 2010 Detection parameters Temp. coefficient 1.76 ps/K = > 11.4 ps / 6.5K (< 20 ps required) Timing jitter ~ 20 ps at 1.7 V a.b. (< 25 ps required)
20
I.Prochazka, CTU Prg Dec 2010 Laser time transfer - timing stability Tdev Graz SLR, 8 ps laser, NPET timing, fixed temperature Tdev ~ 0.4 ps @ 300 sec
21
I.Prochazka, CTU Prg Dec 2010..” The absolute delays in the ELT Package ….calibrated to an accuracy of 48 ps with a goal of 23 ps “.. ELT photon detection delay tests Detection delay : Photon = > Electrical pulse ps pulse SPAD detection chip Receiver optics SPAD Control circuit Ref.point optics Geometry Opt.(~200ps) Photon => e- (fs) Multiplication (~1ns) Geometry Electr.(~100ps) Electronics & Geometry (~ 1 ns) Ref.point electronics ELT detection package PROBLEM Where & When is our photon see Heisenberg relations ….
22
I.Prochazka, CTU Prg Dec 2010 ELT photon detection delay tests PD SPAD chip SPAD Control circuit D1 D2 T0T0 T 0 + ΔT D D Determined repeatedly, +/- 10 ps rms spread Consistent +/- 36 ps values for different lasers Laser # 1 532nm / 650 ps Laser # 2 778 nm / 48 ps ps pulse ELT BB2 PD 1phot Multiphot
23
I.Prochazka, CTU Prg Dec 2010 uLaser NdYAG & SHG 10 kHz, 10 mW, 532 nm = > 1 uJ / pulse Re-collimating optics, directing prismT ~ 1 / 4 Spot size diam 25 mm, S ~ 5 cm 2 Optical NDT ~ 1 / 256 Angle ~0 deg, Att. (3 / 61) 2 no shielding1 photons Resulting signal power density 2 * 10 -13 J / m 2 Specified signal power density 1 * 10 -13 J / m 2 For input shielding, 45 deg. the attenuation has to be changed from (3 / 61) 2 to (5 / 50) 2 (aperture / length) Specified signal power density 1*10 -13 J/m 2 will be obtained Calibration of receiver attenuation
24
I.Prochazka, CTU Prg Dec 2010 UJV Rez, Prague, October 2010 Gamma radiation source, dose / rate specified by ESA / Astrium RESULT after > 3x maximum required dose ELT detector package operational, no detectable parameter change ADCMP (3x) operational, no detectable parameter change Radiation tests Entire ELT receiver package, 3 x ADCMP comparator
25
I.Prochazka, CTU Prg Dec 2010 Completed tasks Design – electronics, optics and mechanics Functional tests – indoor, SLR Development of procedure for internal delay Calibration of receiver attenuation / sensitivity Radiation tests BB & ADCMP 553 comparator All parameters specified by ESA have been met Ground + Space segments delays calibration technique Conclusion
26
I.Prochazka, CTU Prg Dec 2010 ELT delays measurement ELT detector & MWL timing delays MWL is tested/calibrated by TimeTech (LVDS) ELT detector calibrated by CTU (+250mV) WHY to calibrate ( MWL & ELT ) ?? Response of the MWL input circuits to the ELT detector output MWL effective input BW not deffined Optical scheme analogical to the ELT calibration synchronous operation to a common “1 pps” Resulting ELT+MWL delay calculated on the basis of oscilloscope + MWL data
27
I.Prochazka, CTU Prg Dec 2010 ELT delays measurement Ground + Space segments SIMULTANEOUS REFERENCING Both GROUND & SPACE “absolute delays” will disappear and will be replaced by a single calibration value / station. The ELT delay will be calibrated individually for each participating SLR system Calibration value computed from - epoch dif. (E2-E1) - geometry distance L Calibration campaigns – will be organised by TUM and CTU in cooperation with ILRS (Transponder Working Group) presented at IWG#32 Paris April 2010 ELT
28
I.Prochazka, CTU Prg Dec 2010 Laser Time Transfer new missions Beidou-2 IGSO, Aug 1,2010 inclinated 55 o geostationary orbit LTT in common view possible China, Korea, Japan, Australia (~ 1000 s) Dedicated SLR network (PR China) On-board data reduction Operational since August 2010 GLONASS upgrade, Laser time transfer under consideration ? principle ? Dedicated SLR network prepared (global) single photon concept Galileo and Laser Time Transfer ? Europe should not “miss the train” Please, consider
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.