Download presentation
Presentation is loading. Please wait.
Published byRoland Shaw Modified over 9 years ago
1
Chapter 5 - PBL MT 454 Material Based on Chapter 5 The Planetary Boundary Layer
2
MT 454 Class Slide The Planetary Boundary Layer Chapter 5 - PBL
3
MT 454 Class Slide Chapter 5 - PBL
4
MT 454 Class Slide Chapter 5 - PBL
5
MT 454 Class Slide Chapter 5 - PBL
6
5.1 Turbulence - 1 MT 454 Class Slide
7
5.1 Turbulence - 2 MT 454 Class Slide
8
MT 454 Class Slide 5.1 Turbulence - 3
9
MT 454 Class Slide 5.1 Turbulence - 4
10
MT 454 Class Slide Red = w’(t) Blue = ’(t) 5.1 Turbulence - 5
11
MT 454 Class Slide 5.1 Turbulence - 6
12
MT 454 Class Slide 5.1 Turbulence - 7
13
MT 454 Class Slide 5.1 Turbulence - 8
14
MT 454 Class Slide 5.1 Turbulence - 9
15
MT 454 Class Slide 5.1 Turbulence - 10 is the radiative heating rate. Note:
16
MT 454 Class Slide 5.1 Turbulence - 11
17
MT 454 Class Slide 5.1 Turbulence - 12
18
MT 454 Class Slide 5.1 Turbulence - 13
19
MT 454 Class Slide 5.2 TKE - 1
20
MT 454 Class Slide 5.2 TKE - 2
21
MT 454 Class Slide 5.2 TKE - 3
22
MT 454 Class Slide 5.2 TKE - 4
23
Derive TKE Equation Similarly for v’ and w’ 5.2 TKE - 5
24
MT 454 Class Slide 5.2 TKE - 6
25
MT 454 Class Slide 5.2 TKE - 7 = Frictional dissipation (molecular diffusion) > 0 TR = Redistribution by transport & pressure forces (no new TKE created)
26
MT 454 Class Slide 5.2 TKE - 8
27
MT 454 Class Slide 5.2 TKE - 9
28
MT 454 Class Slide Analogue in large-scale flow: How does this circulation lower center of mass? 5.2 TKE - 10
29
BPL - TKE increase for unstable PBL w’ < 0 ’ < 0 w’ > 0 ’ > 0 z If PBL heated from below, then (z): BPL > 0 Primary energy source for unstable PBL (In stable PBL, BPL term gives energy loss) 5.2 TKE - 11
30
BPL - Side Note z More precise (z) when well-mixed PBL is fully developed. Homogeneous, well- mixed layer Unstable layer maintained near surface by surface heating 5.2 TKE - 12
31
MT 454 Class Slide 5.2 TKE - 13
32
MT 454 Class Slide 5.2 TKE - 14
33
MT 454 Class Slide 5.2 TKE - 15
34
MT 454 Class Slide 5.2 TKE - 16
35
MT 454 Class Slide 5.2 TKE - 17
36
MT 454 Class Slide 5.2 TKE - 18
37
MT 454 Class Slide 5.2 TKE - 19
38
MT 454 Class Slide 5.3 PBL momentum
39
MT 454 Class Slide 5.3 PBL momentum
40
MT 454 Class Slide 5.3 PBL momentum
41
MT 454 Class Slide 5.3 PBL momentum
42
MT 454 Class Slide (See figures) 5.3 PBL momentum
43
MT 454 Class Slide 5.3 PBL momentum
44
MT 454 Class Slide 5.3 PBL momentum
45
MT 454 Class Slide 5.3 PBL momentum
46
MT 454 Class Slide 5.3 PBL momentum
47
MT 454 Class Slide 5.3 PBL momentum
48
MT 454 Class Slide 5.3 PBL momentum
49
MT 454 Class Slide 5.3 PBL momentum
50
MT 454 Class Slide (Add friction? See Figure 5.3 in Holton.) 5.3 PBL momentum
51
MT 454 Class Slide 5.3 PBL momentum
52
MT 454 Class Slide 5.3 PBL momentum
53
MT 454 Class Slide 5.3 PBL momentum
54
MT 454 Class Slide 5.3 PBL momentum
55
MT 454 Class Slide 5.3 PBL momentum
56
MT 454 Class Slide 5.3 PBL momentum
57
MT 454 Class Slide 5.3 PBL momentum
58
MT 454 Class Slide 5.3 PBL momentum
59
MT 454 Class Slide 5.3 PBL momentum
60
MT 454 Class Slide 5.3 PBL momentum
61
MT 454 Class Slide 5.3 PBL momentum
62
MT 454 Class Slide 5.3 PBL momentum
63
MT 454 Class Slide 5.3 PBL momentum
64
MT 454 Class Slide 5.3 PBL momentum
65
MT 454 Class Slide 5.3 PBL momentum
66
MT 454 Class Slide 5.3 PBL momentum
67
MT 454 Class Slide (See Figures 5.4 and 5.5 in Holton.) 5.3 PBL momentum
68
MT 454 Class Slide 5.3 PBL momentum
69
MT 454 Class Slide 5.3 PBL momentum
70
MT 454 Class Slide 5.3 PBL momentum
71
MT 454 Class Slide 5.3 PBL momentum
72
MT 454 Class Slide 5.3 PBL momentum
73
MT 454 Class Slide 5.3 PBL momentum
74
MT 454 Class Slide 5.3 PBL momentum
75
MT 454 Class Slide 5.3 PBL momentum
76
MT 454 Class Slide 5.3 PBL momentum
77
MT 454 Class Slide (See Fig. 5.5 in Holton + additional figures.) 5.3 PBL momentum
78
MT 454 Class Slide 5.4 Spin Down
79
Horizontal Wind in PBL In PBL, wind component toward lower pressure … L … giving horizontal convergence around low center 5.4 Spin Down MT 454
80
Vertical Wind in PBL Mass convergence around low pressure … L … gives upward motion over low. Effect on vortex? PBL top 5.4 Spin Down MT 454
81
Class Slide 5.4 Spin Down
82
MT 454 Class Slide 5.4 Spin Down
83
MT 454 Class Slide 5.4 Spin Down
84
MT 454 Class Slide 5.4 Spin Down
85
MT 454 Class Slide 5.4 Spin Down
86
MT 454 Class Slide 5.4 Spin Down
87
MT 454 Class Slide 5.4 Spin Down
88
Slowing Vortex: Vortex Compression Ekman pumping reduces vorticity in free troposphere by vortex compression: L PBL top Tropopause (w ≈ 0) 5.4 Spin Down MT 454
89
Slowing Vortex: Conservation of Angular Momentum Alternatively, outward secondary circulation in free troposphere slows vortex by conservation of angular momentum L PBL top 5.4 Spin Down MT 454
90
Class Slide 5.4 Spin Down
91
MT 454 Class Slide 5.4 Spin Down
92
MT 454 Class Slide 5.4 Spin Down
93
Spin-Down Time Use H = 10 km and previous values for other constants: Then, e ~ 7 days Longer than synoptic time scale A reason why PBL was ignored when introducing quasi-geostrophic motion e = H | 2/(fK m ) | 1/2 5.4 Spin Down MT 454
94
Class Slide 5.4 Spin Down
95
Ekman-Pumping: Torque Outward (secondary ) flow gives torque against primary flow by Coriolis force. L 5.4 Spin Down MT 454
96
Ekman-Pumping Effectiveness Ekman pumping more effective than diffusion: Works not by mixing high/low vorticity air Rather by forcing mass divergence in free troposphere Angular momentum = (moment of intertia) x (rotation rate) Outward mass movement => increased moment of inertia => reduced rotation to conserve angular mom. 5.4 Spin Down MT 454
97
Baroclinic Atmosphere? If atmosphere baroclinic (not barotropic): Circulation confined closer to surface Shear created in vortex => more damping closer to surface Shear balanced by induced T: uplifted air at center cooler than air at vortex edge Final note: all rests on Ekman PBL Qualitatively OK Gives correct approximate physics (cross isobar flow) 5.4 Spin Down MT 454
98
Chapter 5 – Planetary Boundary Layer MT 454 END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.