Download presentation
Presentation is loading. Please wait.
Published byGeoffrey Blair Modified over 9 years ago
1
Metrics for Reconfigurable Architectures Characterization: Remanence and Scalability Pascal BENOIT G. Sassatelli – L. Torres – D. Demigny M. Robert – G. Cambon Name.Surname@lirmm.fr
2
Outline Context Remanence Operative Density Case Study: the Systolic Ring Conclusion and perspectives
3
Context SoC and Customizable Platform Based-Design Specifications Processing power Area Power consumption etc. Reconfigurable Hardware (Coarse Grain) ASIC 1 DSP Reconfigurable Hardware (Fine Grain) We need metrics to compare ! ASIC 2
4
Context Architecture characterization Processing power Power consumption Flexibility Parallelism potential Dynamism Silicon area Scalability … Metrics Dehon criterion Remanence Operative density Generalisation to Architectural model characterisation and metrics depend on architectural parameters « Comparing architectures with a minimum of criteria »
5
Remanence Definition N PE : # of processing elements (PE) Nc: # of PE configurable per cycle Fe: operating frequency Fc configuration frequency Characterizes the Dynamism # of cycles to (re)configure the whole architecture Amount of data to compute between 2 configurations Fe Fc
6
Remanence Comparisons Only 1 cycle to (re)configure the DSP Few cycles to (re)configure coarse grain RA ( 8) Many cycles to (re)configure fine grain RA N PE NcRNameTypeF (MHz) 23040.1416457 2446 46 128168 ARDOISE Systolic Ring DART MorphoSys TMS320C62 Fine Grain RA Coarse Grain RA DSP VLIW88 33 200 130 100 3001
7
Operative Density Definition N PE : # of PEA: Core Area (relative unit ²) Area can be expressed as a function of N PE (architectural model) Characterizes Fixed N PE # of operators per relative area unit Variable N PE OD as a function of N PE A(N PE ) = N PE *A PE +A interconnect (N PE )+A memory (N PE ) A sequencer (N PE ) OD(N PE ) = k A(N PE ) =k.N PE the architectural model is scalable
8
Operative Density Comparisons DSP: sequencer area ARDOISE : fine granularity Coarse granularity Reconfigurable architectures Scalabilty of interconnect resources ? Generalization to architectural models NameType Area(M ²) ARDOISE Fine Grain RA 2612300 0.2 Systolic Ring (S=1, C=6, N=2) Coarse Grain RA 24500 4.8 Systolic Ring (S=1, C=16, N=4) Coarse Grain RA 1287600 1.7 DART Coarse Grain RA 24300 8.0 MorphoSys Coarse Grain RA 1285500 2.3 TMS320C62 DSP VLIW812300 0.1 NameType N PE Area(M ²) OD (N PE ) ARDOISE Fine Grain RA 2612300 0.2 Systolic Ring (S=1, C=6, N=2) Coarse Grain RA 24500 4.8 Systolic Ring (S=1, C=16, N=4) Coarse Grain RA 1287600 1.7 DART Coarse Grain RA 24300 8.0 MorphoSys Coarse Grain RA 1285500 2.3 TMS320C62 DSP VLIW812300 0.1
9
-Architectural Model Characterization - A Case Study: The Systolic Ring
10
Architectural model Characterization The Systolic Ring Architectural model Based on a coarse-grained configurable PE
11
Architectural model Characterization The Systolic Ring Architectural model Based on a coarse-grained configurable PE Circular datapaths Dnode Switch
12
Architectural model Characterization The Systolic Ring Architectural model Based on a coarse-grained configurable PE Circular datapaths 3 parameters C: # of layers N: # of Dnodes per layer Dnode Switch layer 1 layer 2 layer 3 layer 4 # of layers : 4 (C = 4) # of Dnode per layer : 2 (N = 2)
13
Architectural model Characterization The Systolic Ring Architectural model Based on a coarse-grained configurable PE Circular datapaths 3 parameters C: # of layers N: # of Dnodes per layer layer 1layer 2 layer 3 layer 4 layer 5layer 6 layer 7 layer 8 # of layers : 8 (C = 8) # of Dnode per layer : 2 (N = 2)
14
Architectural model Characterization The Systolic Ring Architectural model Based on a coarse-grained configurable PE Circular datapaths 3 parameters C: # of layers N: # of Dnodes per layer S: # of Rings # of layers : 8 (C = 8) # of Dnode per layer : 2 (N = 2) 1 Systolic Ring (S = 1) layer 1layer 2 layer 3 layer 4 layer 5layer 6 layer 7 layer 8
15
Architectural model Characterization The Systolic Ring Architectural model Based on a coarse-grained configurable PE Circular datapaths 3 parameters C: # of layers N: # of Dnodes per layer S: # of Rings # of layers : 4 (C = 4) # of Dnode per layer : 2 (N = 2) 4 Systolic Ring (S = 4)
16
Architectural model Characterization The Systolic Ring Architectural model Based on a coarse-grained configurable PE Circular datapaths 3 parameters C: # of layers N: # of Dnodes per layer S: # of Rings Control Units Local Dnodes units Dnode Sequencer
17
Architectural model Characterization The Systolic Ring Architectural model Based on a coarse-grained configurable PE Circular datapaths 3 parameters C: # of layers N: # of Dnodes per layer S: # of Rings Control Units Local Dnode unit Local Ring unit Local Ring Sequencer Local Ring Sequencer Local Ring Sequencer Local Ring Sequencer
18
Architectural model Characterization The Systolic Ring Architectural model Based on a coarse-grained configurable PE Circular datapaths 3 parameters C: # of layers N: # of Dnodes per layer S: # of Rings Control Units Local Dnode unit Local Ring unit Global unit Global Sequencer Local Ring Sequencer Local Ring Sequencer Local Ring Sequencer Local Ring Sequencer
19
Architectural model Characterization Remanence Only one Systolic Ring S=1 N PE = # of Dnodes = N*C*S = N*C Remanence formalisation k= C/N
20
Architectural model Characterization A(N PE ) formalisation for OD(N PE ) 0.18µ CMOS technology C = 4, N = 2, S = 1 A(8) = 3.3 mm ² A(8) = 407M ² Area formalisation: A ( N PE ) = f ( N, C, S ) depends on C / N ratio and S N PE = N.C.S Area formalisation calibrated on these results Systolic Ring layout (C=4, N=2, S=1)
21
Architectural model Characterization OD(N PE ) for 1 Systolic Ring (S=1) k = C/N = [ 0.25 ; 4 ] decreasing OD(N PE ) OD(N PE ) for several Systolic Ring k = C/N = 4 multi-ring instanciations increase scalability
22
Architectural model Characterization Customisation and design technique between 60 and 80 processing elements
23
Architectural model Characterization Customisation and design technique between 60 and 80 processing elements
24
Architectural model Characterization Customisation and design technique Design Space
25
Architectural model Characterization Best OD and remanence Worst interconnect resources and processing power Design Space
26
Architectural model Characterization Design Space Worst OD and remanence Best interconnect resources and processing power
27
Architectural model Characterization R and OD can be integrated in CAD tools to observe architectural parameters effects and choose best trade-offs in the design space
28
R 1 OD 1 R 2 OD 2 R 3 OD 3 R n OD n Conclusion and perspectives IP 1 Specifications Processing power Area Power consumption etc. IP 2IP 3IP n
29
R 1 OD 1 R 2 OD 2 R 3 OD 3 R n OD n Conclusion and perspectives IP 1 Specifications Processing power Area Power consumption etc. IP 2IP 3IP n Architectural models Comparisons
30
R 1 OD 1 R 2 OD 2 R 3 OD 3 R n OD n Conclusion and perspectives IP 1 Specifications Processing power Area Power consumption etc. IP 2IP 3IP n Architectural model Customisation
31
Thank You
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.