Download presentation
Presentation is loading. Please wait.
Published byLogan Andrews Modified over 8 years ago
1
INTRODUCTION TO RADIO
2
Keywords Radio WaveRadio Wave WavelengthWavelength AmplitudeAmplitude FrequencyFrequency Communication SystemCommunication System Transmission SystemTransmission System Receiver SystemReceiver System SignalSignal Electronic EquipmentElectronic Equipment
3
Communication systems Communication was the first requirement for controlling aircraft traffic. Broadcasting starts in US in 1920 with the invention of RADIO TRANSMITTING EQUIPMENT that capable of transmitting voice and music.
4
Radio Transmitting Equipment The transmitter is the device or installation used to generate and transmit ELECTROMAGNETIC WAVES carrying messages or signals, especially those of radio or television. The receiver is the part that converts electrical signals into sounds. Example: receiver on radio or television converting broadcast signals into sound or images.
5
Communication Communication is a process of transmitting INFORMATION from one location to another MEDIUM is required for the delivery of the information to be exchanged
6
Medium for Communication For example : telephone and cable television –Medium for transmission signal is cable and fibre optics For aircraft or satellite –Medium transmission signal is AIR using ELECTROMAGNETIC WAVES
7
What is a Wave A wave is a disturbance that is produced repeatedly, & transfer energy. Often in the form of vibration & oscillation.
8
Graphical Presentation of a Wave
10
Frequency, f Frequency is the number of complete waves passing a given point per second. It is measured in Hertz. Relationship between frequency, speed and wavelength. Frequency f = c is wavelength, c is speed of light c = 3 10 8 m/s in vacuum
11
Wavelength The distance a radio wave travels during one cycle –One complete change between magnetic and electric fields. Wavelength, = speed of light, c frequency, f
12
Amplitude Amplitude is the strength, or width, of one wave; it decreases with distance from the transmitting site.
13
The shorter the wavelength The higher the frequency
14
What is Electromagnetic Wave
15
Electromagnetic Wave Electromagnetic Wave =Electromagnetic Wave = Electric wave + Magnetic Wave Electric wave + Magnetic Wave Both waves oscillate at the same frequency z x y Electric Field Magnetic Field Direction of Propagation
16
Electromagnetic wave Electromagnetic wave are used to transmit information by wave motion. Invisible Spectrum
17
Examples of Electromagnetic Wave Radio waves (including TV, radio, aircraft communication, radar) Microwaves Infrared radiation Light X-rays Gamma rays
18
Wavelength (Frequency)
19
The Electromagnetic Spectrum Different frequencies of electromagnetic radiation are better suited to different purposes The frequency of a radio wave determines its propagation characteristics
20
Radio waves are used to carry the information you want to convey to someone else. Radio waves are radiated energy –In free space, they travel in straight lines at the speed of light. Radio generally works on AIR waves moving across the ATMOSPHERE. RADIO WAVES
21
Radio Waves in Communication Radio Wave are everywhere. It is used to send message to each other (Example: to broadcast music and TV, aircraft communication)Radio Wave are everywhere. It is used to send message to each other (Example: to broadcast music and TV, aircraft communication) It is possible as Radio Wave can be sent over a very long distanceIt is possible as Radio Wave can be sent over a very long distance
22
Radio-wave communications Radio-wave communications signals travel through the air in a straight line, reflect off of clouds or layers of the ionosphere, or are relayed by satellites in space. They are used in standard broadcast radio and television, short-wave radio, navigation and air-traffic control, cellular telephony, and even remote-controlled toys
23
Earth Atmosphere Earth can cause radio wave to take path other than straight line Significant characteristics of earth –Conductor of electricity –Able to conduct low-frequency Conductor is a material or device that conducts heat or electricity.
24
Earth atmosphere Another conductor – ionosphere (50- 350miles) –Layer of ionized gasses –Act as reflector of radio waves –Low loss –Certain frequencies only (mid range)
25
Atmospheric Phenomenon Three layers: –Troposphere: earth’s surface to about 6.5 mi –Stratosphere: extends from the troposphere upwards for about 23 mi –Ionosphere: extends from the stratosphere upwards for about 250mi –Beyond this layer is free space
26
IONOSPHERE
27
Atmosphere Layers
28
As Radio Wave moving in air, They will subject to?
29
Radio may be subjected to: 1.Reflection (pantulan/lantuna) 2.Refraction (biasan) 3.Diffrraction (serakan,sebaran) 4.Attenuation (pengurangan)
30
Reflection Reflection: A change in direction of travel of a wave, due to hitting a reflective surface. This is the same characteristic displayed by a radio wave as it is reflected from the ionosphere A point to remember is that at each point of reflection, the radio wave reverses its phase A point to remember is that at each point of reflection, the radio wave reverses its phase
31
Refraction Radio waves will bend or refract when they go from one medium. Refract means change the direction of radio propagation of by causing them to travel at different speeds and at different direction along the wave front.
32
Radio Wave Subject to Diffraction: The spreading out of waves, for example when they travel through a small opening.Diffraction: The spreading out of waves, for example when they travel through a small opening. Attenuation: The loss of wave energy as it travels through a mediumAttenuation: The loss of wave energy as it travels through a medium
33
Diffraction Diffraction is the phenomenon which results in radio waves that normally travel in a straight line to bend around an obstacle. Direction of wave propagation Obstacle
34
Radio Propagation Depending upon the frequency of the radiated signal Radio energy is most efficiently propagated by only one of the three main methods: Ground wave Space wave Sky waves
35
Transmission of Radio Waves
36
Effect of ionosphere The atmosphere of the earth is concentrated in a think layer about 300 miles thick. Ionized layers within this span have the ability to reflect high frequency radio waves.
37
Radio Propagation Ground Waves: Part of the transmitted radiation that follows the surface of the earth Sky Waves Part of the transmitted radiation that is reflected or refracted from the ionosphere. Space Waves: Part of the transmitted radiation that does not follow the curvature of the earth
38
Ground Waves Radio wave that travels along the earth’s surface (surface wave) Vertically polarized Changes in terrain have strong effect Attenuation directly related to surface impedances –More conductive the more attenuated –Better over water
39
Ground Waves Two types: Direct & Ground reflected
40
Sky wave Radio waves radiated from the transmitting antenna in a direction toward the ionosphere Long distance transmissions Sky wave strike the ionosphere, is refracted back to ground, strike the ground, reflected back toward the ionosphere, etc until it reaches the receiving antenna Skipping is he refraction and reflection of sky waves
41
Finding where you are on the radio dial There are two ways to tell someone where to meet you on the radio dial (spectrum) –Band –Frequency
42
Radio Frequency (RF) Spectrum The Radio Frequency Spectrum is divided into segments of frequencies that basically have unique behavior.
43
Frequency of Radio Wave Frequency. Radio waves are classified according to their frequency; that is, the number of cycles that occur within 1 second. In radio communications the term Hertz (Hz) is equivalent to the term cycle. 1,000 Hz = 1 kHz = 1 Kilohertz (k=10^3) 1,000,000 Hz = 1 MHz = 1 Megahertz (M=10^6) 1,000,000,000 Hz = 1 GHz = 1 Gigahertz (G=10^9) 1,000,000,000,000 Hz = 1 THz = 1 Terahertz (T=10^12)
44
Radio Frequency (RF) Spectrum SE
45
Exercises List down the frequency range for HF, VHF and UHF
46
A. RADIO THEORY Table of Radio Frequencies DescriptionAbbreviationFrequencyWavelength Very Low Frequency VLF3 KHz - 30 KHz100,000m - 10,000m Low FrequencyLF30 KHz - 300 KHz10,000m - 1,000 Medium FrequencyMF300 KHz - 3 MHz1,000m - 100m High FrequencyHF3 MHz - 30 MHz100m - 10m Very High Frequency VHF30 MHz - 300 MHz10m - 1m Ultra High Frequency UHF300 MHz - 3 GHz1m - 0.10m Super High Frequency SHF3 GHz - 30 GHz0.10m - 0.01m Extremely High Frequency EHF30 GHz - 300 GHz0.01m - 0.001m
47
Frequency Usage There are a large number of users of radio communication How can these users coexist without interfering with each other? Radio communicators can operate without interfering by choosing different radio frequency Each frequency generated by electromagnetic waves modulated with information on carrier Each carrier are distinguished between each other and communication that takes places on one frequency do not interfere with each other
48
Frequency Spectrum The use of filters can filter out any possible frequencies and leaving the frequency desired for communication to take place. E.g. standard broadcast radio – channels (assignment of specific radio channels) Spectrum = distribution of radio energy as a function of frequency e.g. plot of the strength of radio stations
49
Frequency Bands Allocation of frequencies by international treaty the responsibility of the International Telecommunications Union (ITU). Geneva Frequency Band nomencalture is defined in the ITU Radio Regulations, sext. 2.1. in decade steps of 3 to 30 Hz upwards. Aircraft communication is carried out by radio in the following frequency bands:
50
Specific Usage VHF Voice communication Source Carrier 118-121.4 MHzAir Traffic Control 121.5Emergency 121.6 – 121.9Airport Ground control 121.95Flight Schools 121.975Private Aircraft Advisory 123.0 Unicom controlled airports 123.1Search And Rescue 123.675-128.8Air traffic control 128.825-132.0En Route 132.05-135.975Air traffic control
51
So, Where am I? Back to how to tell where you are in the spectrum Bands identify the segment of the spectrum where you will operate –Wavelength is used to identify the band Frequencies identify specifically where you are within the band
52
Another use for frequency and wavelength For the station antenna to efficiently send the radio wave out into space, the antenna must be designed for the specific operating frequency –The antenna length needs to closely match the wavelength of the frequency to be used –Any mismatch between antenna length and frequency wavelength will result in radio frequency energy being reflected back to the transmitter, not going (being emitted) into space
53
Encoding Information on Radio Waves What quantities characterize a radio wave? Two common ways to carry analog information with radio waves –Amplitude Modulation (AM) –Frequency Modulation (FM): “static free”
54
Modulating Radio Waves Modulation - variation of amplitude or frequency when waves are broadcast –AM – amplitude modulation Carries audio for T.V. Broadcasts Longer wavelength so can bend around hills –FM – frequency modulation Carries video for T.V. Broadcasts
55
Types of Modulation Amplitude Modulation- In A.M. the amplitude of the carrier wave is made to vary in accordance with the audio frequency. In Frequency Modulation, the Frequency of the carrier wave is made to vary in accordance with the Audio wave.
56
AM vs. FM FM is not inherently higher frequency than AM –these are just choices –aviation band is 108–136 MHz uses AM technique
57
Frequency Allocation
58
Question 1: wavelength ( ) What is the wavelength of a standard broadcast station operating at a frequency of 1000kilohertz (kHz)?
59
What is Interference Interference: The superposition of two or more waves from coherent sourcesInterference: The superposition of two or more waves from coherent sources
60
Radio-frequency Interference If the radiated energy comes from another radio transmitter, then it is considered radio- frequency interference (RFI) The transmitting antenna should be specifically designed to prevent the energy from being returned to the circuit. It is desirable that the antenna “free” the energy in order that it might radiate into space
61
Electromagnetic Interference If the energy comes from else where, then it is electromagnetic interference (EMI)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.