Download presentation
1
1. Fast ignition by hydrodynamic flow
S.Yu.Gus’kov. LPI RAS Fast Ignition by Detonating Hydrodynamic Flow S.Yu. Gus’kov*, M. Murakami** *P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow, Russia **Institute of Laser Engineering. Osaka University. Japan 7-th Direct Drive and Fast Ignition Workshop. May 3-6, Prague Contents: 1. Fast ignition by hydrodynamic flow 2. Fast ignition by detonating hydrodynamic flow - “target from target” ignition 3. Conclusion: Practicability of fast ignition at the impactor velocity of km/s
2
Fast ignition by hydrodynamic flow
S.Yu.Gus’kov. LPI RAS Fast ignition by hydrodynamic flow
3
Fast Ignition Drivers Compression Ignition Igniting Drivers:
S.Yu.Gus’kov. LPI RAS Fast Ignition Drivers Compression =( ) g/cm3 R = (3 - 4) g/cm2 Ignition T=10 keV Rign = 0. 4 g/cm2 Igniting Drivers: Fast particles from laser-produced plasma electrons (Ee ~ MeV) light ions (Ei ~ MeV/nuclon) Laser : IL > 1019 W/cm2, L< ps. Experiments: CD-target + cone RAL (UK), ILE (Japan) Neutron yield: 105 106 Hydrodynamic pulse I u3 , u ~ 1000 km/s Laser: IL 1015 W/cm2, L 1 ns ILE (Japan) Igniting Driver Energy: Eign = (10-15)/1002 kJ Eign = (10-30) kJ Beam radius: Rign= Rign / Rign 10-30m Pulse duration: ign = Rign/108 ign 10 ps Intensity: Iign ( ) W/cm2
4
General Requirements for Impact Ignition
S.Yu.Gus’kov. LPI RAS General Requirements for Impact Ignition t= g/cm3 ! Tign=10keV. I imu3 Iign t (CDTTign)3/2, ign 0.5(im /t)1/2 = g/cm3 R=3-4 g/cm2 u 1.5(t /im)1/2 (CDTTign)1/2 t = im u = 1500 km/s, t = 10im u > 4000 km/s, Ignition of the Target R=3-4 g/cm2 = g/cm3 I im (CDTTign)3/2 u (CDTTign)1/2 u ~1000 km/s Ignition of the Impactor Theoretical limit of low-entropy laser-driven acceleration of a foil: 1700 km/s
5
Hydrodynamic fast ignition
S.Yu.Gus’kov. LPI RAS Hydrodynamic fast ignition Impact along a cone ~ 1 g/cm3 V ~ 1000 km/s, M.Murakami, H. Nagatomo Nucl. Inst. & Meth. Phys. Res. A544, 67, 2005 Compression in a conical target. Detonating flow. ~ ( ) g/cm3 V ~ ( ) km/s, S. Gus’kov, M.Murakami XXX ECLIM, 2008 Profiling laser pulse Simple 1000 km/s 300 km/ ILE (Osaka University, Japan) experiments on impact ignition, EL~ (1-3) kJ, 3: Acceleration of the foil up to record velocity: 600–700 km/s. Impact neutron generation: (1 -2) 106 DD-neutrons/shot.
6
>> ILE planar impact ignition experiments N: 106 N: 8.3105
S.Yu.Gus’kov. LPI RAS ILE planar impact ignition experiments Watari T, Sakaiya T, Azachi H et al Neutron generation from impact fast ignition Proc. 5-th IFSA conference (Kobe, Japan, September 2007) 1. CD-foil - CD-target impact 3. CD-foil - CH-target impact 2. CD-foil - CD-target impact impactor Main fuel laser 600 mm Be plane (weight) Be frame CD foils 20 mmt Laser energy :1.9 kJ Spot size : 300 mm f laser 600 mm CH plane 300 mmt Be frame CD foils 20 mmt Laser energy :1.3 kJ Spot size : 300 mm f laser Be frame CD foil 20 mmt Laser energy :1.9 kJ Spot size : 300 mm f N: 106 N: 8.3105 >> N: 1.3105 1) impact nature of neutron generation and 2) neutron generation in impact-produced plasma of impactor
7
ILE spherical impact ignition experiments
S.Yu.Gus’kov. LPI RAS ILE spherical impact ignition experiments Watari T, Sakaiya T, Azachi H et al. Neutron generation from impact fast ignition. Proc. 5-th IFSA conference (Kobe, Japan, September 2007 P M T Plastic scintillator 18 cm f × 2.5 cm 47 cm 311 cm 190 cm 178 cm Pb 10 cm 25° 80° 52° 168° 10 cm f × 5 cm target 421 detectors MANDALA 1344 cm Target chamber 1. Nmax= 2106 2. Ti=1.59 keV 3. Nmax corresponds to coincidence of the moments of maximal compression and impact
8
< > u u r r Impactor’s state before collision.
S.Yu.Gus’kov. LPI RAS Impactor’s state before collision. Impactor’s density and velocity distributions along the central axis. L = 600 mm, t = 1.8 ns L = 1000 mm, t = 2 ns u u r r < u 600 km/s u 800 km/s > r 0.2 g / cc r 0.08 g /cc
9
<< > > Impact-produced plasma of impactor and target r r
S.Yu.Gus’kov. LPI RAS Impact-produced plasma of impactor and target Density, ion and electron temperature distributions along the central axis << L = 600 mm, t = 1.8 ns N 106 N L = 1000 mm, t = 2 ns Target Impactor Target Impactor Ti > Te Ti > Te r r Ti=Te Ti=Te Impactor Ti 2.2 keV, Te 1.2 keV r 0.18 g/cc Impactor Ti 6.2 keV, Te 1.8 keV r 0.12 g/cc Target Ti 80 eV, r 3.8 g/cc Target Ti 60 eV, r 3.8 g/cc
10
Gekko/HIPER S.Yu.Gus’kov. LPI RAS
Impactor’s density significantly less than target’s density: imp 0.6 g/cm3 << t 4 g/cm3 Predominant heating of impactor’s ions,Ti>>Te . Equilibrium target’s plasma Ti=Te . Impactor’s temperature significantly larger than target’s temperature: Timp (1.5 -3) keV >> Tt ( ) keV Neutron yield from impactor significantly larger than neutron yield from the target: Nm 107 >> Nm 106 Confirmation of the approach: initial ignition of impactor and subsequent propagation of detonation wave from impactor to compressed thermonuclear fuel of ICF-target
11
Fast ignition by detonating hydrodynamic flow
S.Yu.Gus’kov. LPI RAS Fast ignition by detonating hydrodynamic flow
12
Ignition by Detonating Impactor - “Target From Target” Ignition
S.Yu.Gus’kov. LPI RAS Detonating impactor Development of “Cone-Guided Impactor” to “Target inside Target” Ignition by Detonating Impactor - “Target From Target” Ignition Two well-known ICF-methods: 1. Profiled Laser Pulse and 2. Initial Density Distribution Multi-layer cone target 1. Cone target with homogeneous DT-fuel and profiled laser pulse 2. Cone target with spatial distributed density Ablator Pusher Igniter Cone target Cone target Cone target ICF-target ICF-target ICF-target
13
m t General requirement for ignition by detonating DT-impactor
S.Yu.Gus’kov. LPI RAS General requirement for ignition by detonating DT-impactor 1. Ignition of the impactor: 2. Detonation wave to DT-fuel: United requirement : Minimal ignition energy, m= t : Factor of exceeding: m t
14
“Target from Target” Ignition by Three-Layer Cone Target
S.Yu.Gus’kov. LPI RAS “Target from Target” Ignition by Three-Layer Cone Target
15
Three-layer cone target
S.Yu.Gus’kov. LPI RAS Three-layer cone target 1. Ablator. Light-element material: (CH)n-plastics, Be, Al and others. Function: Acceleration of impactor laser light absorption, ablation pressure creation. Totally evaporated at the acceleration stage. 2. Pusher. Heavy-element material: Cu, Pb, Au and others. Function: Impact-driven adiabatic compression of the igniter. 3. DT-ice Igniter. Function: Self-burning and ignition of ICF-target DT fuel by the detonation wave
16
Statement of the Problem. Planar Approximation.
S.Yu.Gus’kov. LPI RAS Statement of the Problem. Planar Approximation. Pressure in the igniter at a burning stage: R=0.4 г/см2, T=10 keV, =100 г/см2 P~ Gbar 1. Deceleration of the igniter by first shock wave, Pb0 << Pt 2. Deceleration of the pusher and adiabatic compression of the ignitor, Pb>>Pb0 3. Shock wave in ICF-Target DT-fuel; Effect of DT-fuel compressibility, Pb>Pt
17
Residual kinetic energy of the impactor
S.Yu.Gus’kov. LPI RAS Compression and heating of the igniter The moment of maximal compression: deceleration of the impactor down to the velocity of shock wave in ICF-target DT-fuel Energy of shock wave in ICF-target DT-fuel Residual kinetic energy of the impactor Adiabatic compression at the initial entropy from first shock wave: 1. Residual kinetic energy of the impactor: 2. Energy of shock wave in ICF-target DT-fuel:
18
Uncompressible ICF-target fuel: Compressible ICF-target fuel:
S.Yu.Gus’kov. LPI RAS Final state of the igniter Exact solution for m= s= t= : “Uncompressible” solution Compressibility factor Internal energy of igniter Uncompressible ICF-target fuel: Pb/Pw 1100,m 75 g/cm3; T=10 keV, at um 365 km/s; energy factor, 0.25 Au-pusher, Ms/Mm=20 Compressible ICF-target fuel: Pb/Pw 700; m 52 g/cm3; T=10 keV, at um 410 km/s; energy factor, 0.18
19
Final igniter density and velocity of ignition
S.Yu.Gus’kov. LPI RAS Final igniter density and velocity of ignition Pusher and igniter mass ratio vs final igniter density 1, 2, 3, 4 - energy factor, Em / E0 = 0.3 5, 6, 7, 8 - energy factor, Em / E0 = 0.5 Tig=10 keV: initial impactor velocity vs final igniter density t=500g/cc t=300g/cc t=200g/cc uncompressible ICF-target fuel u 330 km/s Au-pusher: Mpusher/Migniter 38 DT-igniter, ()ig=0.4 g/cm2: ig 40 m Migniter g Mpusher g t=300 g/cm3 Eigniter/Eimpactor = 0,56 ig=100 g/cm3 Initial: Eimpactor 70 kJ Final: Eigniter 40 kJ
20
Conical three - layer igniting target design
S.Yu.Gus’kov. LPI RAS Conical three - layer igniting target design
21
Igniting target. Requirements to the design
S.Yu.Gus’kov. LPI RAS Igniting target. Requirements to the design 2R0 Cone opening angle (R)ig , ig L (R)t , t Ignition of the igniter: (R)ig=0.4 g/cm2 High gain of ICF-target (R)t=3-4 g/cm2 Shell velocity: Evaporation - 50%, M0 / Mf = 2 Mass of ablator = a half of total mass, 0.3, u 0.57(I2)1/3 Eimp=70 kJ, u = cm/s, =0.3, =50o, = 0.35 m R0 cm, L0. 32 cm, 19.5ns
22
Be-ablator: Mablator=Mpusher Elaser= Eimpactor / Kabs
S.Yu.Gus’kov. LPI RAS Igniting conical target design R0 cm DT-igniter: Migniter g Au-pusher: Mpusher g Be-ablator: Mablator=Mpusher Elaser= Eimpactor / Kabs Eimpactor 70 kJ = 0.3, Kabs= 0.7 Elaser 320 kJ igniter 21,3 m pusher m ablator m 2R0 0.3 cm m m L cm 21,3 m =50o
23
Conclusion: Practicability of hydrodynamic ignition at the velocity of 300-500 km/s
1. Fast Ignition by Detonating Hydrodynamical Flow Approach of “Target from Target” ignition Conical three-layer igniting target: Ignition at the initial velocity of hydrodynamical flow 330 km/s and final density of detonating flow 100 g/cm3 Laser parameters: EL= 320 kJ, L= 19.5 ns 2. Key points: Hydrodynamic instability Impactor’s state before impact EOS of heavy pusher 3. Experiments: collision of multi-layer impactor accelerated along conical or cyllindrical channels with a massive plane target.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.