Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2.

Similar presentations


Presentation on theme: "Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2."— Presentation transcript:

1 Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2. check precision Contents –STS Tracking (Strip Detectors) Hough Transform –MAPS Tracking Kalman Filter October 7, 2004 CBM Collaboration Meeting

2 STS Tracking Hough Transform of Parabola x = z 2 0.3 B y 2 P z = 0.3 B y z 2 2 x PzPz 1 = 0.3 B y (z cos  + x sin  ) 2 2 (z sin  – x cos  ) PzPz 1 rotated by  (P x /P z ): Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

3 STS Tracking 3-D Hough Transform 1/Pz Px/Pz Py/Pz Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering 3-D according to the three parameters of a track –bending 1/P z, angles  and  (P x /P z, P y /P z ) –P y /P z detector slice corresponds to one 2-D Hough-histogram –2-D Hough-histograms can be processed independently –P y /P z planes are overlapping ( due to multiple scattering)

4 STS Tracking Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Systolic processing of space points (1 hit/cycle) DQ CNT Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

5 STS Tracking Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Systolic processing of space points (1 hit/cycle) DQ CNT Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

6 STS Tracking Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Systolic processing of space points (1 hit/cycle) DQ CNT Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

7 STS Tracking Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Systolic processing of space points (1 hit/cycle) one hit -> one curve Cell number of peak determines track parameters Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

8 STS Tracking Simulation Results Efficiency e: found tracks/all tracks with P > 1GeV/c g: ghost tracks/processed tracks i: identified tracks/processed tracks –31 x 95 x 383e: 95 %,g: 25 %,i: 45 % –63 x 191 x 255e: 93 %,g: 12 %,i: 65 % Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

9 STS Tracking Simulation Results Precision of the reconstructed momentum –63 x 191 x 255 Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

10 STS Tracking Hardware Implementation Processing speed (rough estimations) Real-time tracking (emphasis is on fast) –1 hit/cycle –e.g. 10 Gb/s link with 64 bit/hit => 150 x 10 6 hits/s 1 hit/cycle => 150 MHz –1500 to 10000 hits/event => 10µs to 100µs –total number of processing units ca. 200 x 10 Gb/s links needed for STS => ca. 200 units Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

11 STS Tracking of Strip Detectors Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Processing of strip detector data one hit (x strip) -> one plane (horizontal) stop Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

12 STS Tracking of Strip Detectors Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start stop Processing of strip detector data one hit (y strip) -> one plane (vertical) Logical AND gives same Hough Transform than intersection point of strips (+ all fakes given by strip layout) to do: angles other than 90°, especially small angles Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

13 MAPS layer 1 and 2 (monolithic active pixel sensors) –high resolution < 10 µm –slow readout > 10 µs pile up of ca. 100 events Kalman Filter track following –track hits from L3 – L5 as seed later Hough transform –emphasis is on fast: process 1 track/cycle 100 µm Si MAPS Tracking Kalman Filter Track Following Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

14 y-z plane (non-bending) => straight line –y = m * z + c –start with m 0 = y 0 /z 0, c 0 =0 –predict position in previous layer y k = m k-1 * z k + c k-1 –measure position (distance predicted – real  y k ) –update estimate with measurement y k, m k, c k are simple function of m k-1, c k-1 and  y k  y k needs few bits to code noise and error covariance are chosen to „believe“ the latest measurement ^ ^ Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering MAPS Tracking Kalman Filter Track Following

15 x-z plane (magnetic field) => parabola –x = a z 2 + b z + c –start with a 0, b 0 from hits in layer 3, 4, 5 (or Hough-Transform), c 0 =0 –predict position in previous layer x k = a k-1 z k 2 + b k-1 z k + c k-1 –measure position (distance predicted – real  x k ) –update estimate with measurement x k, a k, b k, c k are simple functions of a k-1, b k-1, c k-1,  x k  x k needs few bits to code noise and error covariance are chosen to „believe“ the latest measurement ^ Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering ^ MAPS Tracking Kalman Filter Track Following

16 Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering no binning of data max distance 0.5 mm nearest hit as function of P Z tracks with lower momentum are worse w/o pileup –98% of nearest hits from same track with pileup –no missing hits –less hits from same track (ca. 10 %) MAPS Tracking Simulation Results

17 coefficients and parameters with 10 – 12 bit sufficient –no double precision floating point needed –old values -> LUTs -> adder -> LUT -> new value associative hit memory Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering hits from detector layer predicted position  x,  y of nearest hit................................. MAPS Tracking Hardware Implementation

18 Summary Hough Transform –global algorithm –processing time ~ number of hits –possible implementation using FPGA and LUT –efficiency ca. 95% of tracks found –relatively high ghost rate –able to handle strip detectors Kalman Filter –MAPS pile up ca. 100 min. bias events –w/o pile up ca. 98% of nearest hits from same track –with pile up ca. 88% of nearest hits from same track ca. 12 % of nearest hits from other events –possible implementation using FPGA and LUT simple calculation associative hit memory Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering


Download ppt "Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2."

Similar presentations


Ads by Google