Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 G.M. Kulikov and S.V. Plotnikova Speaker: Gennady Kulikov Department of Applied Mathematics & Mechanics A New Approach to 3D Exact Thermoelastic Analysis.

Similar presentations


Presentation on theme: "1 G.M. Kulikov and S.V. Plotnikova Speaker: Gennady Kulikov Department of Applied Mathematics & Mechanics A New Approach to 3D Exact Thermoelastic Analysis."— Presentation transcript:

1 1 G.M. Kulikov and S.V. Plotnikova Speaker: Gennady Kulikov Department of Applied Mathematics & Mechanics A New Approach to 3D Exact Thermoelastic Analysis of Functionally Graded Laminated Plates and Shells G.M. Kulikov and S.V. Plotnikova Speaker: Gennady Kulikov Department of Applied Mathematics & Mechanics

2 2 Description of Temperature Field (1) (2) Temperature Gradient  in Orthonormal Basis N - number of layers; I n - number of SaS of the nth layer n = 1, 2, …, N; i n = 1, 2, …, I n ; m n = 2, 3, …, I n - 1  (n)1,  (n)2, …,  (n)I - sampling surfaces (SaS)  (n)i - transverse coordinates of SaS  [n-1],  [n] - transverse coordinates of interfaces n n 33 3 T(  1,  2,  3 ) – temperature; c  = 1+k   3 – components of shifter tensor at SaS A  (  1,  2 ), k  (  1,  2 ) – Lamé coefficients and principal curvatures of midsurface 

3 3 Temperature Distribution in Thickness Direction Temperature Gradient Distribution in Thickness Direction (3) (4) (5) T (n)i (  1,  2 ) – temperatures of SaS; L (n)i (  3 ) – Lagrange polynomials of degree I n - 1 nn  (n)i (  1,  2 ) – temperature gradient at SaS n i

4 4 Relations between Temperature Gradient and Temperature Derivatives of Lagrange Polynomials at SaS c (n)i (  1,  2 ) – components of shifter tensor at SaS n  (6) (7) (8)

5 5  (n)1,  (n)2, …,  (n)I - sampling surfaces (SaS)  (n)i - transverse coordinates of SaS  [n-1],  [n] - transverse coordinates of interfaces n 33 3 n (9) (10) (11) Position Vectors and Base Vectors of SaS Kinematic Description of Undeformed Shell N - number of layers; I n - number of SaS of the nth layer n = 1, 2, …, N; i n = 1, 2, …, I n ; m n = 2, 3, …, I n - 1 r(  1,  2 ) – position vector of midsurface  ; e i (  1,  2 ) – orthonormal base vectors of midsurface 

6 6 u (  1,  2 ) – displacement vectors of SaS (n)i(n)i n ( (12) (13) (14) Base Vectors of Deformed SaS Position Vectors of Deformed SaS (n)i(n)i n  (  1,  2 ) – values of derivative of displacement vector at SaS Kinematic Description of Deformed Shell u (  1,  2,  3 ) – displacement vector

7 7 Green-Lagrange Strain Tensor at SaS Linearized Strain Tensor at SaS Displacement Vectors of SaS in Orthonormal Basis (15) (16) (17)

8 8 Derivatives of Displacement Vectors in Orthonormal Basis Strain Parameters of SaS Linearized Strains of SaS Remark. Strains (20) exactly represent all rigid-body shell motions in any convected curvilinear coordinate system. It can be proved through results of Kulikov and Carrera (2008) (18) (19) (20)

9 9 Displacement Distribution in Thickness Direction Strain Distribution in Thickness Direction Presentation for Derivative of Displacement Vector (21) (22) (23)

10 10 Variational Formulation of Thermal Problem Heat Flux Resultants (24) (25) (26) (27) Basic Functional of Heat Conduction Theory q (n) – heat flux of the nth layer; Q n – specified heat flux i

11 11 Fourier Heat Conduction Equations k (n) – thermal conductivity tensor of the nth layer ij (28) (29) (30) (31) Distribution of Thermal Conductivities in Thickness Direction Heat Flux Resultants

12 12  (n) – entropy density of the nth layer;  (n) = T (n) - T 0 – temperature rise of the nth layer (32) (33) (34) Stress Resultants Variational Formulation of Thermoelastic Problem F (n) – free-energy density of the nth layer;  (n) – stress tensor of the nth layer ij W – work done by external loads Variational Equation

13 13 Basic Functional of Thermoelasticity Theory Constitutive Equations C ijkl,  ij,  (n) – physical properties of the nth layer (n) (35) (36) (37) (38) Entropy Resultants

14 14 (39) (40) (41) (42) Presentations for Stress and Entropy Resultants Distribution of Material Constants in Thickness Direction C ijkl,  ij,  (n)i – values of material constants on SaS of the nth layer (n)i n nn

15 15 Numerical Examples 1. FG Rectangular Plate under Mechanical Loading Analytical solution Table 1. Results for a FG square plate for a = b =1 m, a/h = 3 and  = 0 Dimensionless variables in crucial points I1I1 -u 1 (0.5)u 3 (0)  11 (0.5)  13 (0)  33 (0) 30.39863724945046801.2788782433895911.9993021468548370.49774361511680030.4752837277628003 70.43589339371319481.3425549534665132.1240324282884130.70227626660600940.4943950643281928 110.43589339426031201.3425546895430952.1240184103140480.70230220832235380.4944039935419638 150.43589339426031211.3425546895424912.1240184101937820.70230220847675800.4944039936052152 190.43589339426031201.3425546895424912.1240184101937800.70230220847675780.4944039936052150 Exact0.43589339426031201.3425546895424912.1240184101937810.70230220847675780.4944039936052149 Exact results have been obtained by authors using Vlasov's closed-form solution (1957)   

16 16 Table 2. Results for a FG square plate for a = b =1 m, a/h = 3 and  = 0.1 Figure 1. Through-thickness distributions of transverse stresses of FG plate with a/h = 1: present analysis (─) for I 1 = 11 and Vlasov's closed-form solution (  ), and Kashtalyan's closed-form solution (  ) I1I1 -u 1 (0.5)u 3 (0)  11 (0.5)  13 (0)  33 (0) 30.41583365026526521.3479772412572942.0732399068074750.49832267990213840.4596565434470269 7 0.45369779791337921.4146360436827282.1932658589898440.70207003397206540.4877173446168515 11 0.45369779841425761.4146357713109622.1932702584590390.70209576763559460.4877129579452970 15 0.45369779841425761.4146357713103682.1932702586500210.70209576779048560.4877129578319663 19 0.45369779841425751.4146357713103682.1932702586500210.70209576779048540.4877129578319657 Exact 1.41464 Exact results have been obtained by Kashtalyan (2004)   

17 17 2. Two-Phase FG Rectangular Plate under Temperature Loading Analytical solution Dimensionless variables in crucial points Mori-Tanaka method is used for evaluating material properties of the Metal/Ceramic plate with where V c, V c – volume fractions of the ceramic phase on bottom and top surfaces 

18 18 I1I1 u 1 (0.5)u 3 (0.5)  11 (0.5)  12 (0.5)  13 (0.25)  33 (0)  (0) q 1 (0)q 3 (-0.5)  (0) 3-1.20964.4213-3.1907-6.47754.3279-266.580.397800.249940.5911986.305 5-1.21174.4198-4.1612-6.48905.0419-6.31220.393790.247420.7239285.605 7-1.21014.4111-4.1765-6.48044.2085-8.78940.393750.247400.7312585.596 9-1.21014.4111-4.1764-6.48044.2259-8.68030.393750.247400.7315885.596 11-1.21014.4111-4.1764-6.48044.2265-8.68300.393750.247400.7316085.596 13-1.21014.4111-4.1763-6.48044.2264-8.68290.393750.247400.7316085.596 15-1.21014.4111-4.1763-6.48044.2264-8.68290.393750.247400.7316085.596 Vel-1.21014.4111-4.1764-6.48044.2264-8.68290.39380.7316 Table 3. Results for a single-layer Metal/Ceramic square plate with a = b =1 m, a/h = 5 Table 4. Results for a single-layer Metal/Ceramic square plate with a = b =1 m, a/h = 10 I1I1 u 1 (0.5)u 3 (0.5)  11 (0.5)  12 (0.5)  13 (0.25)  33 (0)  (0) q 1 (0)q 3 (-0.5)  (0) 3-1.20953.6353-3.0497-6.47734.7296-1259.00.42763 0.7105192.759 5-1.21403.6416-4.1605-6.50155.3713-13.7900.42404 0.8021692.184 7-1.21243.6337-4.1555-6.49284.4563-9.76550.42401 0.8072392.176 9-1.21243.6337-4.1555-6.49284.4699-9.15310.42401 0.8074792.176 11-1.21243.6337-4.1555-6.49284.4704-9.16270.42401 0.8074892.176 13-1.21243.6337-4.1555-6.49284.4703-9.16220.42401 0.8074892.176 15-1.21243.6337-4.1555-6.49284.4703-9.16220.42401 0.8074892.176 Vel-1.21243.6337-4.1555-6.49284.4703-9.16220.42400.8075            

19 19 Figure 2. Through-thickness distributions of temperature, heat flux, transverse displacement and stresses of the single-layer Metal/Ceramic plate for I 1 = 13

20 20 3. Laminated FG Plate in Cylindrical Bending under Temperature Loading Analytical solution Dimensionless variables in crucial points Mori-Tanaka method is used for evaluating material properties of the Metal/Ceramic layer with where V c, V c – volume fractions of the ceramic phase on bottom and top surfaces 

21 21 Table 5. Results for a three-layer FG plate in cylindrical bending with a/h = 2 Table 6. Results for a three-layer FG plate in cylindrical bending with a/h = 10 InIn u 1 (0.5)u 3 (0.5)  11 (0.5)  12 (0.5)  13 (0)  23 (0)  33 (0)  (-0.125) q 3 (0)  (-0.125) 5-3.236116.2138.14300.57593-15.268 -15.585 6.0563 6.0669 -12.182 -9.2884 0.176340.33688 0.21846 25.797 7-3.233016.1918.13480.57574-15.191 -15.183 6.0485 6.0481 -10.454 -10.374 0.176240.34081 0.33462 25.787 9-3.233016.1918.13590.57575-15.189 6.0482 -10.420 -10.418 0.176240.34088 0.34058 25.787 11-3.233016.1918.13600.57575-15.189 6.0482 -10.420 0.176240.34088 0.34087 25.787 13-3.233016.1918.13600.57575-15.189 6.0482 -10.420 0.176240.34088 25.787 InIn u 1 (0.5)u 3 (0.5)  11 (0.5)  12 (0.5)  13 (0)  23 (0)  33 (0)  (-0.125) q 3 (0)  (-0.125) 5-3.656210.38211.1390.36661-18.896 -19.640 3.4801 3.4897 -18.347 -10.309 0.676130.58345 0.55498 98.669 7-3.652610.36411.1460.36569-18.920 -18.905 3.4729 3.4728 -18.132 -16.795 0.676130.58347 0.58200 98.669 9-3.652710.36411.1470.36569-18.920 3.4729 -18.132 -18.054 0.676130.58347 0.58340 98.669 11-3.652710.36411.1480.36569-18.920 3.4729 -18.132 -18.129 0.676130.58347 98.669 13-3.652710.36411.1480.36569-18.920 3.4729 -18.132 0.676130.58347 98.669            

22 22 Figure 3. Through-thickness distributions of temperature, heat flux, transverse displacement and stresses of the three-layer plate for I 1 = I 2 = I 3 = 13

23 23 on bottom and top surfaces 4. Two-Phase FG Cylindrical Shell under Temperature Loading Analytical solution Dimensionless variables in crucial points Mori-Tanaka method is used for evaluating material properties of the Metal/Ceramic shell where V c, V c – volume fractions of the ceramic phase 

24 24 I1I1 u 1 (0.5)u 2 (0.5)u 3 (0.5)  11 (0.5)  22 (0.5)  12 (0.5)  13 (0)  23 (0)  33 (0)  (0) q 3 (-0.5)  (0) 3-5.18888.790724.985-0.541354.5306-2.53921.10082.3140-133.410.447890.7915697.474 5-5.16898.699224.828-1.71823.4238-2.56823.12117.2866-3.50900.444970.8709097.050 7-5.16588.695724.815-1.69883.4379-2.56563.14717.3990-2.34740.444920.8751197.042 9-5.16588.695624.815-1.69873.4380-2.56563.14527.3997-2.29130.444920.8753297.043 11-5.16588.695624.815-1.69873.4380-2.56563.14557.4002-2.29190.444920.8753397.043 13-5.16588.695624.815-1.69873.4380-2.56563.14547.4001-2.29180.444920.8753397.043 15-5.16588.695624.815-1.69873.4380-2.56563.14557.4001-2.29180.444920.8753397.043 I1I1 u 1 (0.5)u 2 (0.5)u 3 (0.5)  11 (0.5)  22 (0.5)  12 (0.5)  13 (0)  23 (0)  33 (0)  (0) q 3 (-0.5)  (0) 3-2.5424-1.539330.845-5.33593.8713-4.49750.565805.9348-25.3160.434340.7373794.251 5-2.5397-1.585230.872-6.19233.1512-4.52451.532611.283-4.00270.434350.9090994.431 7-2.5355-1.584330.806-6.18973.1388-4.51831.379911.256-4.04100.434610.9105094.484 9-2.5355-1.584430.806-6.18903.1395-4.51831.363811.259-4.03760.434630.9118694.490 11-2.5355-1.584330.806-6.18913.1395-4.51831.367611.263-4.03900.434630.9119994.490 13-2.5355-1.584330.806-6.18923.1394-4.51831.366711.262-4.03890.434630.9120294.490 15-2.5355-1.584330.806-6.18923.1393-4.51831.367011.263-4.03870.434630.9120394.490 17-2.5355-1.584330.806-6.18923.1393-4.51831.366911.263-4.03870.434630.9120394.490 Table 7. Results for a single-layer Metal/Ceramic cylindrical shell with a/h = 2 Table 8. Results for a single-layer Metal/Ceramic cylindrical shell with a/h = 10                

25 25 Figure 4. Through-thickness distributions of temperature, heat flux, transverse displacement and stresses of the single-layer Metal/Ceramic cylindrical shell for I 1 = 13

26 26 5. Antisymmetric Angle-Ply Rectangular Plate under Temperature Loading Analytical solution (r = s = 1) Dimensionless variables in crucial points

27 27 InIn u 1 (0.5)u 3 (0)  11 (-0.5)  12 (0.5)  13 (0.25)  33 (0.25)  (0.25) q 3 (0.25) 32.0154-3.521854.229112.53 3.837022.62946.85235.104-0.261850.234714.0000 52.2910-4.1102127.59151.80-8.004834.3038.752714.509-0.300860.245312.2963 72.2949-4.1179132.69152.24-6.949933.2193.21078.9775-0.300220.246742.5068 92.2949-4.1179133.01152.23-7.004433.2733.51889.2855-0.300250.246702.4935 112.2949-4.1179133.02152.23-7.002833.2723.50909.2757-0.300250.246712.4939 132.2949-4.1179133.02152.23-7.002833.2723.50929.2759-0.300250.246712.4939 Table 9. Results for the antisymmetric angle-ply square plate with a = b = 1 m and a/h = 4 Table 10. Results for the antisymmetric angle-ply square plate with a = b = 1 m and a/h = 10 InIn u 1 (0.5)u 3 (0)  11 (-0.5)  12 (0.5)  13 (0.25)  33 (0.25)  (0.25) q 3 (0.25) 31.5132-8.6313118.13160.54 1.598213.35818.01715.449-0.409740.1581910.000 51.5709-8.9944141.82170.57-5.305820.9341.31392.6692-0.412340.160738.9303 71.5710-8.9945142.23170.56-5.179520.8070.863862.2198-0.412330.160758.9569 91.5710-8.9945142.23170.56-5.180620.8080.868372.2243-0.412330.160758.9566 111.5710-8.9945142.23170.56-5.180620.8080.868352.2243-0.412330.160758.9566       ̃ ̃̃       ̃ ̃̃

28 28 Figure 5. Through-thickness distributions of symmetric and unsymmetric components of temperature, entropy and transverse stresses of the antisymmetric angle-ply square plate for I 1 = I 2 =11

29 29 Thanks for your attention!


Download ppt "1 G.M. Kulikov and S.V. Plotnikova Speaker: Gennady Kulikov Department of Applied Mathematics & Mechanics A New Approach to 3D Exact Thermoelastic Analysis."

Similar presentations


Ads by Google