Download presentation
Presentation is loading. Please wait.
Published byHugh Carter Modified over 9 years ago
1
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions with hot, dense matter Therefore: Study the charge state evolutions and energy loss of heavy ions interacting with solids (HMI) and plasma (GSI). Application: Heavy Ion driven Inertial Confinement Fusion Heavy Ion driven Material Processing
2
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Outline Experimental setup at GSI Plasma- and Laser diagnostic pinhole cameras X-ray spectroscopy visible streak camera laser interferometry laser output sensor PIC simulations of the laser-plasma interaction Interaction of Ar ions with solid carbon foils charge exchange cross sections charge dependent stopping power S(q) Outlook
3
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Experimental setup at GSI nhelix mirror focus lens target ion beam Ion bunches at 103 MHz FWHM = 3 ns
4
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 ion beam visible streak camera laser interferomerty X-ray streak camera Laser output sensor laser beam pinhole cameras Plasma diagnostic setup
5
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Plasma diagnostic – pinhole camera Magnifying pinhole camera 3.36 0.42 12.81 8.79 2.61 0.6 pinhole camera T e ≈ 150 – 200 eV hn > 300 eV hn > 300 eV / 2 keV
6
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Time resolved and space integrated line radiation of carbon laser produced plasma Plasma diagnostic – X-ray spectroscopy time C-foil m=500 m g/cm 2 C +5 C +4 C +5 Ry T e ~70-100 eV n e =10 19 -10 20 cm -3 T e : I Ly / I He n e : n max of Ry satellites
7
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Plasma diagnostic – vis. streak camera V = 8.84 · 10 6 cm/s T = 240 eV
8
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Plasma diagnostic – laser interferometry Fringe shifts due to varying electron density, n e < 10 20 cm -3
9
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Laser diagnostic Energy: 70 –110 J Focus intensity profile Temporal profile Reflected light 14 ns *
10
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 PIC simulation ring focus #27i, r = 0.4 mm, FWHM = 0.4 mm t=6 ns t=8 ns t=10 ns
11
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Charge State Evolution of Ar in solid C HMI Berlin Q3D: ΔE/E=110 -4 Exp: f(q i, q f, d) of Ar, 4 MeV/u Theory: solution of the rate equations cross sections e-capture ionization excitation decay Blazevic et al., Phys. Rev. A, vol. 61, 032901
12
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Charge dependent energy loss E of Ar @ 4 MeV/u in Carbon
13
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 ΔE(q,d) + б i + MCS S(q) Charge dependent stopping power S(q) Theory: Sigmund/Schinner Phys. Scr.T92 (2001) 222 Schiwietz/Grande NIM B153 (1999) 1 Maynard NIM A 464 (2001) 86 Kaneko Phys.Rev. A49(4) (1994)2681 Blazevic et al., NIM B 190 (2002) 64
14
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Outlook Upgrade the laser interferometry to = 256 nm, t L = 0.5 ns 4 frame pinhole camera, t exp = 3 ns Improvement of the laser focus Benchmarks for the PIC simulation of the plasma Calculate the projectile´s charge states evolution in plasma Scale the charge exchange cross sections in solid matter to plasma conditions & solve the rate equations nN-CTMC simulation of the ion- plasma interaction Energy loss experiments with the PHELIX laser and hohlraum targets
15
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 ring focus #27d, r = 0.3 mm, FWHM = 0.4 mm t=8 ns t=9 ns t=10 ns PIC simulation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.