Download presentation
Presentation is loading. Please wait.
Published byMelinda York Modified over 8 years ago
1
VMI images –fitting Helgi Rafn Hróðmarsson
2
The purpose of this fitting procedure is to check whether the assumption that the angular distribution data can be fitted with an expression of both the two-photon excitation transition as well as the ionization pathway. (see slides 9 – 21 in https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131219.pptx ) https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131219.pptx
3
i.e. something like: 0 180 f i ph f Experiment (ph) (1) + A ~ -for red coloured parameters unknown => derive (ph)
4
Previous fit functional form used by Dimitris Zaouris was I( )= A(1 + 2 *(1.5*cos 2 ( )-0.5) The new fit equation (named „Ice fit“) is based on a two-step excitation scheme as formulated in slides 9 – 21 in https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131219.pptx : https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131219.pptx I( )=A*(1+ 2 (f) *(1.5*cos 2 ( )-0.5))*(1+ 2 (ph) *(1.5*cos 2 ( )-0.5)) where A is a normalizing constant. 2 (f) = -0.62215, obtained from REMPI data. (see slide 17 in https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131219.pptx) https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131219.pptx 2 (ph) is the “beta-factor” for the ionization pathway.
6
E(v=0,J=1) – peak A – Ice fit 1
7
E(v=0,J=1) – peak B – Ice fit 1
8
Peaks (J=1)GreekIcelandic 1 A (A; 1; 2) 0,76118±0,00925 0,45744±0,0283 0,86907±0,0127 -0,62215 1,1514±0,0345 B0,85873±0,00499 -0,37458±0,0126 0,89662±0,00382 -0,62215 0,33335±0,00962 C0,13704±0,0075 1,9112±0,173 0,17007±0,0112 -0,62215 2±0,17 D0,41475±0,00541 1,7632±0,0399 0,52983±0,0235 -0,62215 2±0,14 E0,27321±0,0106 1,8038±0,12 0,3591±0,0268 -0,62215 2±0,192 F0,36161±0,00817 1,5113±0,0651 0,46318±0,027 -0,62215 1,9759±0,148 G0,39409±0,00923 1,4896±0,0672 0,50614±0,0259 -0,62215 1,9828±0,131
9
E(v=0,J=2) – peak A – Ice Fit 1
10
E(v=0,J=2) – peak B – Ice fit 1
11
Peaks (J=2)GreekIcelandic 1 A (A; 1; 2) 0,76118±0,00925 0,45744±0,0283 0,81307±0,0134 -0,62215 1,2773±0,0392 B0,87669±0,00429 0,29162±0,0106 0,91825±0,00505 -0,62215 0,39804±0,0131 C0,17162±0,0121 2±0,227 0,23872±0,0199 -0,62215 2±0,45 D0,43901±0,0077 1,391±0,0492 0,46173±0,0246 -0,62215 2±0,30 E0,29792±0,0159 1,839±0,166 0,36734±0,0271 -0,62215 2±0,22 F0,15042±0,00463 1,4516±0,0875 0,20227±0,0123 -0,62215 2±0,18 G0,43901±0,0077 1,391±0,0492 0,53567±0,0212 -0,62215 1,8482±0,0971
12
E(v=0,J=3) – peak A – Ice fit 1
13
E(v=0,J=3) – peak B – Ice fit 1
14
Peaks (J=3)GreekIcelandic 1 A (A; 1; 2) 0,87109±0,0104 0,18036±0,0267 0,97163±0,0108 -0,62215 0,91082±0,0262 B0,90372±0,00754 -0,17687±0,0182 0,97059±0,0085 -0,62215 0,56026±0,02 C D0,22624±0,0106 1,3921±0,131 0,31474±0,00922 -0,62215 2±0,10 E0,48809±0,0241 -0,62215 2±0,15 F0,3953±0,0146 1,2594±0,1 0,49898±0,0216 -0,62215 1,8438±0108 G0,49621±0,0177 1,0946±0,0939 0,63018±0,0132 -0,62215 1,7876±0,0531
15
E(v=0,J=4) – peak A – Ice fit 1
16
E(v=0,J=4) – peak B – Ice fit 1
17
Peaks (J=4)GreekIcelandic 1 A (A; 1; 2) 0,8717±0,0101 0,33282±0,0252 0,92483±0,0146 -0,62215 0,41919±0,0355 B0,66393±0,00724 -0,036446±0,024 0,72084±0,00475 -0,62215 0,69182±0,0156 C D0,61987±0,0248 -0,62215 1,939±0,101 E0,35438±0,0194 1,3384±0,152 0,44253±0,0342 -0,62215 1,8133±0,192 F0,50083±0,0149 1,2284±0,0803 0,65381±0,0247 -0,62215 1,8808±0,0984 G0,25361±0,0101 0,80411±0,099 0,32169±0,0113 -0,62215 1,6199±0,0873
18
E(v=0,J=5) – peak A – Ice fit 1
19
E(v=0,J=5) – peak B – Ice fit 1
20
Peaks (J=5)GreekIcelandic 1 A (A; 1; 2) 0,56496±0,00739 -0,17113±0,0285 0,60009±0,00992 -0,62215 0,521±0,0397 B0,90547±0,00856 0,063685±0,0209 0,99436±0,0101 -0,62215 0,7879±0,0241 C D0,25092±0,0109 -0,62215 2±0,13 E0,1303±0,00748 1,3471±0,159 0,16249±0,0131 -0,62215 1,8091±0,201 F0,26804±0,00894 1,3276±0,0922 0,34558±0,0161 -0,62215 1,9056±0,121 G0,13687±0,00377 1,0828±0,0722 0,17482±0,00575 -0,62215 1,7706±0,083
21
E(v=0,J=6) – peak A – Ice fit 1
22
E(v=0,J=5) – peak B – Ice fit 1
23
Peaks (J=6)GreekIcelandic 1 A (A; 1; 2) ±±±± 0,82007±0,00725 -0,62215 0,3087±0,02 B0,85371±0,094 0,25965±0,0249 0,96185±0,0101 -0,62215 0,98997±0,0247 C D0,55652±0,0309 -0,62215 1,9759±0,147 E0,46686±0,0224 1,1077±0,127 0,59043±0,0284 -0,62215 1,7602±0,121 F0,1392±0,00437 1,0142±0,0811 0,17906±0,0073 -0,62215 1,7545±0,103 G0,41703±0,0184 0,97138±0,113 0,55327±0,026 -0,62215 1,803±0,121
24
E(v=0,J=7) – peak A – Ice fit 1
25
E(v=0,J=7) – peak B – Ice fit 1
26
Peaks (J=7)GreekIcelandic 1 A (A; 1; 2) 0,81874±0,00999 -0,1475±0,0266 0,8855±0,0118 -0,62215 0,59888±0,0303 B0,85244±0,0103 0,19325±0,027 0,96448±0,0113 -0,62215 0,95905±0,0272 C D0,35768±0,0169 -0,62215 1,8061±0,119 E0,20043±0,0121 1,3719±0,168 0,2557±0,0196 -0,62215 1,8678±0,196 F0,56079±0,0224 0,96569±0,102 0,71665±0,0184 -0,62215 1,7332±0,0651 G0,47816±0,0227 0,92885±0,121 0,61749±0,0223 -0,62215 1,7435±0,0918
27
E(v=0,J=8) – peak A – Ice fit 1
28
E(v=0,J=8) – peak B – Ice fit 1
29
Peaks (J=8)GreekIcelandic 1 A (A; 1; 2) 0,85434±0,00782 -0,32847±0,0199 0,89395±0,0102 -0,62215 0,36528±0,0272 B0,61819±0,00641 0,26281±0,0235 0,70103±0,0096 -0,62215 1,0059±0,032 C D0,48587±0,0314 -0,62215 1,8065±0,161 E0,050319±0,00362 0,81428±0,178 0,06375±0,00468 -0,62215 1,5693±0,18 F0,37184±0,00899 0,83385±0,0602 0,45401±0,0145 -0,62215 1,5277±0,0782 G0,53696±0,0225 0,98697±0,108 0,67354±0,0151 -0,62215 1,7095±0,0556
30
E(v=0,J=9) – peak A- Ice fit 1
31
E(v=0,J=9) – peak B- Ice fit 1
32
Peaks (J=9)GreekIcelandic 1 A (A; 1; 2) 0,7539±0,00573 -0,59057±0,0166 0,76278±0,00548 -0,62215 0,068452±0,0165 B0,8±0,00798 0,23631±0,0225 0,90479±0,0118 -0,62215 0,98217±0,0304 C D0,29856±0,0186 -0,62215 1,6688±0,155 E0,10717±0,00755 0,73928±0,172 0,12381±0,011 -0,62215 1,2622±0,21 F0,25428±0,102 0,55248±0,0946 0,30221±0,0139 -0,62215 1,2887±0,109 G0,21671±0,00926 0,78085±0,105 0,27046±0,0092 -0,62215 1,5698±0,0834
33
The Greek fit
34
The Icelandic fit 2 (ph)
35
Peak A angular distributions „Ice fit“:
37
Peak A – Intensity contour
38
Peak B angular distributions
40
Peak B – Intensity contour
41
Now to test another fit equation namely... I( )=A*(1+ 2 (f) *P 2 (cos( 4 (f) *P 4 (cos( ))* (1+ 2 (ph) *P 2 (cos( 4 (ph) *P 4 (cos( )) I( )=A*(1 + 2 (f) * (1.5 * cos 2 ( ) - 0.5) + 4 (f) * (1/8) * (35 * cos 4 ( ) – 30 * cos 2 ( ) + 3)) * (1 + 2 (ph) * (1.5 * cos 2 ( ) - 0.5) + 4 (ph) * (1/8) * (35 * cos 4 ( ) – 30 * cos 2 ( ) + 3)))...to try to get a better fit to the curves. Let’s try this fit of peak A and peak B. Again, as before, we keep 2 (ph) constant and we’ll be observant whether the 2 (f) constant stays about the same or it changes dramatically.
42
J=1 – Peak A
43
And comparison with the previous “Ice fit”.
44
E(v=0,J=1) – peak A – Ice fit 1
45
1) We get a better fit than before with more points from the edges of the scattering. 2) The 2 (f) constant changes from 1.15 to 1.28, i.e. not a gargantuan increase. 3) We also get values for the 4 (f) constant as well as 4 (ph) constant.
46
J=1 – Peak B
47
J=2 – Peak A
48
J=2 – Peak B
49
J=3 – Peak A
50
J=3 – Peak B
51
J=4 – Peak A
52
J=4 – Peak B
53
J=5 – Peak A
54
J=5 – Peak B
55
J=6 – Peak A
56
J=6 – Peak B
57
J=7 – Peak A
58
J=7 – Peak B
59
J=8 – Peak A
60
J=8 – Peak B
61
J=9 – Peak A
62
J=9 – Peak B
63
Beta2 (fit 1)Beta2 (fit 2)Beta4ph (fit 2)Beta4f (fit 2) J=1 – peak A1.15±0.031.28±0.03-0.01±0.020.30±0.06 J=1 – peak B0,33±0,010.31±0,010.04±0,01-0.02±0,02 J=2 – peak A1,28±0,041.39±0,03-0.01±0,020.34±0,06 J=2 – peak B0,40±0,010.41±0,010.06±0,020.01±0,03 J=3 – peak A0,91±0,030.91±0,030.11±0,030.00±0,06 J=3 – peak B0,56±0,020.59±0,03-0.05±0,030.16±0,06 J=4 – peak A0,42±0,040.32±0,040.21±0,10-0.24±0,15 J=4 – peak B0,69±0,020.72±0,020.06±0,020.05±0,03 J=5 – peak A0,52±0,040,51±0,040.19±0,07-0.10±0,11 J=5 – peak B0,79±0,020.87±0,05-0.05±0,030.22±0,09 J=6 – peak A0,31±0,020.34±0,03-0.04±0,030.12±0,06 J=6 – peak B0,99±0,021.04±0,010.038±0,0080.14±0,02 J=7 – peak A0,60±0,030.56±0,030.09±0,04-0.01±0,08 J=7 – peak B0,96±0,030.98±0,030.02±0,020.15±0,05 J=8 – peak A0,37±0,030.35±0,050.11±0,07-0.04±0,12 J=8 – peak B1,01±0,031.05±0,020.05±0,010.18±0,03 J=9 – peak A0,07±0,020.02±0,020.13±0,07-0.16±0,09 J=9 – peak B0,98±0,030.99±0,020.12±0,020.08±0,05
64
A B Only small change in 2 (ph) compared to that for first „Ice fit“: 2 (ph)
65
The Icelandic fit 2 (ph)
66
All in all a)The vibrational peaks C – G involve almost purely Parallel photodissociation transition b)The H + + Br(1/2) formation (peak A) involves decreasing parallel/ increasing perpendicular photodissociation transition with J´. c) The H + + Br(3/2) formation (peak B) involves increasing parallel/ decreasing perpendicular photodissociation transition with J´. This can be compared with the predicted transitions, based on the comparison with HCl as shown on next slides (see also https://notendur.hi.is/~agust/rannsoknir/Crete/HBr%20REMPI%20work-Crete.pptx ) https://notendur.hi.is/~agust/rannsoknir/Crete/HBr%20REMPI%20work-Crete.pptx
67
H* + Br (3/2) H + + Br - Ry V/Ion-pair [ 4 ,5s ] 3 H* + Br*(1/2) [ B 2 ].. H + Br**(5s) H + + Br (3/2)/Br*(1/2) HBr + (v + )(3/2,1/2) E1+E1+ V/ 1 + Peaks C-G: [2 2 ] 1 0, 3 0
68
H* + Br (3/2) H + + Br - Ry V/Ion-pair [ 4 ,5s ] 3 H* + Br*(1/2) [2 2 ] 1 0, 3 0 [ B 2 ].. H + Br**(5s) H + + Br*(1/2) E1+E1+ V/ 1 + Peak A: and states involved
69
H* + Br (3/2) Ry V/Ion-pair [ 4 ,5s ] 3 H* + Br*(1/2) [ B 2 ].. H + Br**(5s) H + + Br(3/2) H + + Br - [2 2 ] 1 0, 3 0 Peak B: E1+E1+ V/ 1 + and states involved
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.