|z|) (Intercept) titan$Age Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 755 degrees of freedom Residual deviance: on 754 degrees of freedom AIC:"> |z|) (Intercept) titan$Age Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 755 degrees of freedom Residual deviance: on 754 degrees of freedom AIC:">
Download presentation
Presentation is loading. Please wait.
Published byTheodore Tate Modified over 8 years ago
1
Logistic Regression
2
Example: Survival of Titanic passengers We want to know if the probability of survival is higher among children Outcome (y) = survived/not Explanatory (x) = age at death > titan<- read.table("D:/RShortcourse/titanic.txt",sep=",",header=T, na=".") > titan2<-na.omit(titan) > log1<- glm(titan2$Survived~titan2$Age,family=binomial("logit")) Since “logit” is the default, you can actually use: > log1<-glm(titan2$Survived~titan2$Age,binomial) > summary(log1)
3
Example in R Call: glm(formula = titan$Survived ~ titan$Age, family = binomial("logit")) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.081428 0.173862 -0.468 0.6395 titan$Age -0.008795 0.005232 -1.681 0.0928. --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1025.6 on 755 degrees of freedom Residual deviance: 1022.7 on 754 degrees of freedom AIC: 1026.7
4
Plot > plot(titan2$Age~fitted(log1), xlab="Age", ylab="P(Survival)", pch=15)
5
Example: Categorical x Sometimes, it’s easier to interpret logistic regression output if the x variables are categorical Suppose we categorize maternal age into 3 categories: > titan$agecat4 35, c(1),c(0)) > titan$agecat3 =18 & titan$Age<=35, c(1),c(0)) > titan$agecat2 =6 & titan$Age<=17, c(1),c(0)) > titan$agecat1 <- ifelse(titan$Age<6, c(1),c(0)) Age at Death Survival< 6 years6-17 years18-35 years> 35 years No830263142 Yes2830149106
6
Example in R > log2<-glm(titan2$Survived~titan2$agecat2 + titan2$agecat3 + titan2$agecat4, binomial) summary(log2) Remember, with a set of dummy variables, you always put in one less variable than category
7
Example in R Call: glm(formula = titan2$Survived ~ titan2$agecat1 + titan2$agecat2 + titan2$agecat3, family = binomial) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.2924 0.1284 -2.278 0.022734 * titan2$agecat1 1.5452 0.4209 3.671 0.000242 *** titan2$agecat2 0.2924 0.2883 1.014 0.310573 titan2$agecat3 -0.2758 0.1643 -1.679 0.093172. --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Null deviance: 1025.57 on 755 degrees of freedom Residual deviance: 999.07 on 752 degrees of freedom AIC: 1007.1
8
Interpretation: odds ratios > exp(cbind(OR=coef(log2),confint(log2))) Waiting for profiling to be done... OR 2.5 % 97.5 % (Intercept) 3.5000000 1.67176790 8.2301627 titan2$agecat2 0.2857143 0.10674004 0.7040320 titan2$agecat3 0.1618685 0.06737731 0.3485255 titan2$agecat4 0.2132797 0.08772147 0.4663720 This tells us that: Passengers 35 years Passengers in the other two age groups have no significant difference in odds of survival from passengers >35 years
9
Now let’s make it more complicated Do sex and passenger class predict survival? Let’s try a saturated model: > log3<-glm(titan$Survived~titan$Sex + titan$PClass + titan$Sex:titan$PClass, binomial) > summary(log3)
10
Example in R Call: glm(formula = titan$Survived ~ titan$Sex + titan$PClass + titan$Sex:titan$PClass, family = binomial) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 2.7006 0.3443 7.843 4.41e-15 *** titan$Sexmale -3.4106 0.3793 -8.992 < 2e-16 *** titan$PClass2nd -0.7223 0.4540 -1.591 0.112 titan$PClass3rd -3.2014 0.3724 -8.598 < 2e-16 *** titan$Sexmale:titan$PClass2nd -0.3461 0.5274 -0.656 0.512 titan$Sexmale:titan$PClass3rd 1.8827 0.4283 4.396 1.10e-05 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Null deviance: 1688.1 on 1312 degrees of freedom Residual deviance: 1155.9 on 1307 degrees of freedom AIC: 1167.9
11
What variables can we consider dropping? > anova(log3,test="Chisq") Analysis of Deviance Table Response: titan$Survived Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev P(>|Chi|) NULL 1312 1688.1 titan$Sex 1 332.53 1311 1355.5 < 2.2e-16 *** titan$PClass 2 156.48 1309 1199.0 < 2.2e-16 *** titan$Sex:titan$PClass 2 43.19 1307 1155.9 4.176e-10 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Small p-values indicate that all variables are needed to explain the variation in y
12
Goodness of fit statistics Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 2.7006 0.3443 7.843 4.41e-15 *** titan$Sexmale -3.4106 0.3793 -8.992 < 2e-16 *** titan$PClass2nd -0.7223 0.4540 -1.591 0.112 titan$PClass3rd -3.2014 0.3724 -8.598 < 2e-16 *** titan$Sexmale:titan$PClass2nd -0.3461 0.5274 -0.656 0.512 titan$Sexmale:titan$PClass3rd 1.8827 0.4283 4.396 1.10e-05 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Null deviance: 1688.1 on 1312 degrees of freedom Residual deviance: 1155.9 on 1307 degrees of freedom AIC: 1167.9 -2 log L AIC
13
Binned residual plot install.packages("arm") library(arm) x<-predict(log3) y<-resid(log3) binnedplot(x,y) Category is based on the fitted values 95% of all values should fall within the dotted line Plots the average residual and the average fitted (predicted) value for each bin, or category
14
Poisson Regression Using count data
15
What is a Poisson distribution?
16
Example: children ever born The dataset has 70 rows representing group-level data on the number of children ever born to women in Fiji: Number of children ever born Number of women in the group Duration of marriage 1=0-4, 2=5-9, 3=10-14, 4=15-19, 5=20-24, 6=25-29 Residence 1=Suva (capital city), 2=Urban, 3=Rural Education 1=none, 2=lower primary, 3=upper primary, 4=secondary+ > ceb<-read.table("D:/RShortcourse/ceb.dat",header=T)
18
Poisson regression in R > ceb1<-glm(y ~ educ + res, offset=log(n), family = "poisson", data = ceb) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.43029 0.01795 79.691 <2e-16 *** educnone 0.21462 0.02183 9.831 <2e-16 *** educsec+ -1.00900 0.05217 -19.342 <2e-16 *** educupper -0.40485 0.02956 -13.696 <2e-16 *** resSuva -0.05997 0.02819 -2.127 0.0334 * resurban 0.06204 0.02442 2.540 0.0111 * --- Null deviance: 3731.5 on 69 degrees of freedom Residual deviance: 2646.5 on 64 degrees of freedom AIC: Inf Need to account for different population sizes in each area/group unless data are from same-size populations
19
Assessing model fit 1.Examine AIC score – smaller is better 2.Examine the deviance as an approximate goodness of fit test Expect the residual deviance/degrees of freedom to be approximately 1 > ceb1$deviance/ceb1$df.residual [1] 41.35172 3.Compare residual deviance to a 2 distribution > pchisq(2646.5, 64, lower=F) [1] 0
20
Model fitting: analysis of deviance Similar to logistic regression, we want to compare the differences in the size of residuals between models > ceb1<-glm(y~educ, family=“poisson", offset=log(n), data= ceb) > ceb2<-glm(y~educ+res, family=“poisson", offset=log(n), data= ceb) > 1-pchisq(deviance(ceb1)-deviance(ceb2), df.residual(ceb1)-df.residual(ceb2)) [1] 0.0007124383 Since the p-value is small, there is evidence that the addition of res explains a significant amount (more) of the deviance
21
Overdispersion in Poission models A characteristic of the Poisson distribution is that its mean is equal to its variance Sometimes the observed variance is greater than the mean Known as overdispersion Another common problem with Poisson regression is excess zeros Are more zeros than a Poisson regression would predict
22
Overdispersion Use family=“quasipoisson” instead of “poisson” to estimate the dispersion parameter Doesn't change the estimates for the coefficients, but may change their standard errors > ceb2<-glm(y~educ+res, family="quasipoisson", offset=log(n), data=ceb)
23
Poisson vs. quasipoisson Family = “poisson” Family = “quasipoisson” Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.43029 0.01795 79.691 <2e-16 *** educnone 0.21462 0.02183 9.831 <2e-16 *** educsec+ -1.00900 0.05217 -19.342 <2e-16 *** educupper -0.40485 0.02956 -13.696 <2e-16 *** resSuva -0.05997 0.02819 -2.127 0.0334 * resurban 0.06204 0.02442 2.540 0.0111 * --- (Dispersion parameter for poisson family taken to be 1) Null deviance: 3731.5 on 69 degrees of freedom Residual deviance: 2646.5 on 64 degrees of freedom Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.43029 0.10999 13.004 < 2e-16 *** educnone 0.21462 0.13378 1.604 0.11358 educsec+ -1.00900 0.31968 -3.156 0.00244 ** educupper -0.40485 0.18115 -2.235 0.02892 * resSuva -0.05997 0.17277 -0.347 0.72965 resurban 0.06204 0.14966 0.415 0.67988 --- (Dispersion parameter for quasipoisson taken to be 37.55359) Null deviance: 3731.5 on 69 degrees of freedom Residual deviance: 2646.5 on 64 degrees of freedom
24
Models for overdispersion When overdispersion is a problem, use a negative binomial model Will adjust estimates and standard errors > install.packages(“MASS”) > library(MASS) > ceb.nb <- glm.nb(y~educ+res+offset(log(n)), data= ceb) OR > ceb.nb<-glm.nb(ceb2) > summary(ceb.nb)
25
NB model in R glm.nb(formula = ceb2, x = T, init.theta = 3.38722121141125, link = log) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.490043 0.160589 9.279 < 2e-16 *** educnone 0.002317 0.183754 0.013 0.98994 educsec+ -0.630343 0.200220 -3.148 0.00164 ** educupper -0.173138 0.184210 -0.940 0.34727 resSuva -0.149784 0.165622 -0.904 0.36580 resurban 0.055610 0.165391 0.336 0.73670 --- (Dispersion parameter for Negative Binomial(3.3872) family taken to be 1) Null deviance: 85.001 on 69 degrees of freedom Residual deviance: 71.955 on 64 degrees of freedom AIC: 740.55 Theta: 3.387 Std. Err.: 0.583 2 x log-likelihood: -726.555 > ceb.nb$deviance/ceb.nb$df.residual [1] 1.124297
26
What if your data looked like…
27
Zero-inflated Poisson model (ZIP) If you have a large number of 0 counts… > install.packages(“pscl”) > library(pscl) > ceb.zip <- zeroinfl(y~educ+res, offset=log(n), data= ceb)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.