Download presentation
1
Introduction to Scientific Computing II
From Relaxation to Multigrid Dr. Miriam Mehl
2
Relaxation Methods problem: order an amount of peas on a straight line
(corresponds to solving uxx=0)
3
Relaxation Methods – Gauss-Seidel
sequentially place peas on the line between two neighbours we get a smooth curve instead of a straight line global error is locally (almost) invisible
4
Relaxation Methods – Jacobi
place peas on the line between two neighbours in parallel we get a high plus a low frequency oscillation these fequencies are locally (almost) invisible
5
Relaxation Methods – Properties
convergence depends on method frequency of the error stepsize h
6
Jacobi – Details fast for middle frequencies slow for
high and low frequencies
7
Gauss-Seidel – Details
fast for high frequencies slow for low frequencies
8
Multigrid – Principle fine grid eliminate high frequencies
coarse grids eliminate low frequencies(!) equation for the error(!) error smooth => representable
9
Multigrid – Algorithm iterate (GS) on the fine grid
restrict residual to the coarse grid solve coarse grid equation for the error interpolate error to the fine grid correct fine grid solution
10
Multigrid Methods – Presmoothing
Gauss Seidel
11
Multigrid Methods – Presmoothing
Gauss Seidel
12
Multigrid Methods – Presmoothing
Gauss Seidel
13
Multigrid Methods – Presmoothing
Gauss Seidel
14
Multigrid Methods – Presmoothing
Gauss Seidel
15
Multigrid Methods – Presmoothing
Gauss Seidel
16
Multigrid Methods – Presmoothing
Gauss Seidel
17
Multigrid Methods – Presmoothing
Gauss Seidel
18
Multigrid Methods – Presmoothing
Gauss Seidel
19
Multigrid Methods – Presmoothing
Gauss Seidel
20
Multigrid Methods – Presmoothing
Gauss Seidel
21
Multigrid Methods – Presmoothing
Gauss Seidel
22
Multigrid Methods – Presmoothing
Gauss Seidel
23
Multigrid Methods – Presmoothing
Gauss Seidel
24
Multigrid Methods – Presmoothing
Gauss Seidel
25
Multigrid Methods – Presmoothing
Gauss Seidel
26
Multigrid Methods – Presmoothing
Gauss Seidel
27
Multigrid Methods – Presmoothing
Gauss Seidel
28
Multigrid Methods – Presmoothing
Gauss Seidel
29
Multigrid Methods – Presmoothing
Gauss Seidel
30
Multigrid Methods – Presmoothing
Gauss Seidel
31
Multigrid Methods – Residual
Almost zero neglected in following slides
32
Multigrid Methods – Restriction
33
Multigrid Methods – Coarse Grid
34
Multigrid Methods – Coarse Grid
35
Multigrid Methods – Coarse Grid
36
Multigrid Methods – Coarse Grid
37
Multigrid Methods – Coarse Grid
38
Multigrid Methods – Coarse Grid
39
Multigrid Methods – Coarse Grid
40
Multigrid Methods – Coarse Grid
41
Multigrid Methods – Coarse Grid
42
Multigrid Methods – Coarsest Grid
43
Multigrid Methods – Coarsest Grid
44
Multigrid Methods – Coarse Grid
45
Multigrid Methods – Coarse Grid
46
Multigrid Methods – Postsmoothing
47
Multigrid Methods – Postsmoothing
48
Multigrid Methods – Postsmoothing
49
Multigrid Methods – Postsmoothing
50
Multigrid Methods – Postsmoothing
51
Multigrid Methods
52
Multigrid remember: Gauss Seidel error before smoothing after
10 iterations
53
Multigrid fine grid reduce high frequencies error before smoothing
after smoothing
54
Multigrid switch to coarse grid restrict residual residual before
restriction after restriction
55
Multigrid solve coarse grid equation recursive call of multigrid
coarse grid solution
56
Multigrid solve coarse grid equation recursive call of multigrid
coarse grid solution fine grid error
57
Multigrid switch to fine grid interpolate coarse grid solution
interpolated coarse grid solution fine grid error
58
Multigrid switch to fine grid apply coarse grid correction
fine grid error before correction after correction
59
Multigrid fine grid eliminate new high frequencies fine grid error
before smoothing after smoothing
60
Multigrid comparison Gauss-Seidel – multigrid error
after 10 Gauss-Seidel iterations after 1 multigrid iteration
61
Multigrid – Cycles V-cycle: one recursive call
W-cycle: two recursive calls F-cycle: V-cycle on each level
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.