Presentation is loading. Please wait.

Presentation is loading. Please wait.

Polar Coordinates z=rcisӨ

Similar presentations


Presentation on theme: "Polar Coordinates z=rcisӨ"— Presentation transcript:

1 Polar Coordinates z=rcisӨ
Write z=2+3i in polar form. 1: sketch the point. 2. find modulus & argument (angle the line makes with the real axis) Modulus is √(22+32)=√13 Ө=tan-1(3/2)=0.9828rad (4dp) 2+3i=√13cos √13isin0.983 = √13(cos isin0.983) 3. write in polar (rcisӨ) form. = √13cis0.9828

2 Polar Form rcisθ=r(cos θ+isin θ)
r=√ (a2+b2) r=√ ( ) r=3.32 90 θ 0.9 Θ=inv.tan(3.2/0.9) =74.29’ =3.2cos 3.2 Θ= --( ) Θ= ’ i (rectangular form) Polar form is 3.32cis( ’)

3 On GRAPHICS CALCULATOR:
RUN mode->OPTN->CPLX, To find modulus: Abs(2+3i) To find argument: Arg (2+3i)

4 Practice: write in polar form (with arguments in radians)
Z=6+i Z=-4+2i Z=-3-4i Z=2-5i Answers: a)z=6.08cis(0.1651) b)z=4.47cis(2.6779) c)z=5cis( ) c)z=5.39cis( )

5 Converting from polar to rectangular form… expand out:
Write z=3cis(-150°) in rectangular form. 3cis(-150)=3(cos-150+isin-150) = i Change to rectangular form: Z=4cis(27°) Z=2.3cis(140°) Z=1.9cis(-1.427rad) Z=5.4cis(-2.15rad) Ex 32.1 p.293 #2-5

6 Operating on Numbers in Polar Form
Multiplication: multiply the moduli, add the argument. Division: divide the moduli, subtract the argument. Raising to a power (This is called DeMoivre’s Theorem) Ex 32.2 p.293 Ex 32.3 p.296 #1


Download ppt "Polar Coordinates z=rcisӨ"

Similar presentations


Ads by Google