Download presentation
Presentation is loading. Please wait.
Published byJackson Douglas Modified over 10 years ago
1
SemanticMining WP20 meeting Freiburg, March 29 – 20, 2004
2
Agenda March 29 12:30 - 13:30 Lunch 13:30Welcome, dicussion of agenda 14:00 - 14:35 Linköping presentation 14:35 - 15:10 Brighton presentation 15:10 - 15:45 Göteborg presentation 15:45 - 16:30 Coffee break 16:30 - 17:05 Stockholm presentation 17:05 - 17:40 Geneva presentation 17:40 - 18:25 Paris presentation 18:25 - 19:00 Freiburg presentation 20:00 Dinner March 30 9:00 - 10:30 Discussion of the description of WP 20. 10:30 – 10:45 coffee break 11:00-12:45 Workplan for WP20 Discussion and elaboration of deliverables 13:00-14:00 Lunch
3
Multi-lingual Medical Dictionary Description of Work (I) The lack of a large-scale multi-lingual medical dictionary hampers the integration of European research activities in the medical field, and more seriously also the development of multi-lingual information retrieval services. An interesting language technology useful for this problem is corpus-based machine translation. The aim of this project is to develop techniques and systems for lexical data generation from parallel corpora, and to develop and apply methods for evaluation of machine translation systems. Parallel corpora exist e.g. as translations from English to other European languages of the official WHO classifications and some other terminology systems. Several of the NoE partners have extensive experience in multilingual lexical resources and computational lexicography, while others have an interest in applying such tools e.g. for semi-automated translation, semi-automated coding and indexing, and advanced systems for information retrieval.
4
Tasks 20.1 Facilitating short study visits of members of each others groups 20.2 Sharing and exchange of methods, materials and collaboration on work in progress 20.3 Proposal for a common data structure for a multi-lingual medical dictionary 20.4 Generation of multi-lingual medical lexicon in English, German, French, Portuguese, Italian, Spanish, Swedish in a range of 4.000-40.000 entries per language Deliverables D20.1 Report Multi-lingual Medical Dictionary m11 D20.2 Report Multi-lingual Medical Dictionary m17 Multi-lingual Medical Dictionary Description of Work (II)
5
Topics for Discussion Lexeme features (morphology, syntax, semantics) Application context (IR, NLG, …) Linguistic framework (grammar theory) Languages covered Domain (sublanguages, general language) Size of the lexicon Implementation framework (sources, exchange templates, Interfaces to terminological resources (UMLS, WordNet) Methods for lexical acquisition (manual, semi-automatic)
6
MorphoSaurus Subword Lexicon & Thesaurus Freiburg University Hospital Department of Medical Informatics Freiburg University Computational Linguistics Lab
7
Motivation – Intra- and Crosslingual Indexing for Information Retrieval Requirements: Elimination of inflectional e derivational variation: {nucleus,nuclei}, {diagnosis,diagnoses,diagnostic} {foot, feet}, {Lymphozyten, lymphozytär} Decomposition of compound terms: procto|sigmoid|o|scop|ie, para|sympath|ectomy, Rechts|herz|insuffizienz, psic|o|s|somát|ic|o Resolution of Synonyms and Spelling Variants: {oesophagus, esophagus}, {leuko, leuco}, {cutis, skin},{hemorrhage,bleeding}, {ascorbic,Vitamin C, {ancylostoma, hookworm} Mapping of interlingual synonyms: {blood, blut, sangue}, {liver, hepat..., fígado} {kidney, nephr.., nefr.., nier.., ren, rim, },
8
What is a subword ? An atomic linguistic sense unit: Morphemes: nephr, anti, thyr, scler, hepat, cardi Morpheme aggregates: diaphys, ascorb, anabol, diagnost Words: amyloid, bone, fever, liver exceptionally: noun groups: vitamin c,… Taming the growth rates of lexical resources at a sublinear level
9
Subword Delimitation Criteria Semantic (compositionality) Hyper | cholesterol | emia Lexical (enabling synonym matching) schleimhaut = mucosa (schleim | haut) Data-driven (avoiding ambiguities and false segmentation), e.g. relationship, schwangerschaft (relation|ship, schwanger|schaft)
10
The MorphoSaurus system Extracts semantically relevant subwords from medical texts in different language Transforms IR relevant content to concept- like semantic identifiers. (MID = MorphoSaurus identifiers)
11
Example: High TSH values suggest the diagnosis of primary hypo- thyroidism... Original Erhöhte TSH-Werte erlauben die Diagnose einer primären Hypo- thyreose...
12
Example: High TSH values suggest the diagnosis of primary hypo- thyroidism... Original Erhöhte TSH-Werte erlauben die Diagnose einer primären Hypo- thyreose... high tsh values suggest the diagnosis of primary hypo- thyroidism... erhoehte tsh werte erlauben die diagnose einer primaeren hypo- thyreose... Orthographic Rules Orthographic Normalization
13
Example: high tsh value s suggest the diagnos is of primar y hypo thyroid ism er hoeh te tsh wert e erlaub en die diagnos e einer primaer en hypo thyre ose Morphosyntactic Parser Lexicon High TSH values suggest the diagnosis of primary hypo- thyroidism... Original Erhöhte TSH-Werte erlauben die Diagnose einer primären Hypo- thyreose... high tsh values suggest the diagnosis of primary hypo- thyroidism... erhoehte tsh-werte erlauben die diagnose einer primaeren hypo- thyreose... Orthographic Rules Orthographic Normalization
14
Example: high tsh value s suggest the diagnos is of primar y hypo thyroid ism er hoeh te tsh wert e erlaub en die diagnos e einer primaer en hypo thyre ose Morphosyntactic Parser Lexicon High TSH values suggest the diagnosis of primary hypo- thyroidism... Original Erhöhte TSH-Werte erlauben die Diagnose einer primären Hypo- thyreose... high tsh values suggest the diagnosis of primary hypo- thyroidism... erhoehte tsh-werte erlauben die diagnose einer primaeren hypo- thyreose... Orthographic Rules Orthographic Normalization upiiiij tsh valueiiqrij suggestiipzzr diagnostiiiryz primariiiyiy smalliiiqqi thyreiiprzw MID-Representation upiiiij tsh valueiiqrij permitiji diagnostiiiryz primariiiyiy smalliiiqqi thyreiiprzw Thesaurus Semantic Normalization
15
Example: high tsh value s suggest the diagnos is of primar y hypo thyroid ism er hoeh te tsh wert e erlaub en die diagnos e einer primaer en hypo thyre ose Morphosyntactic Parser Lexicon High TSH values suggest the diagnosis of primary hypo- thyroidism... Original Erhöhte TSH-Werte erlauben die Diagnose einer primären Hypo- thyreose... high tsh values suggest the diagnosis of primary hypo- thyroidism... erhoehte tsh-werte erlauben die diagnose einer primaeren hypo- thyreose... Orthographic Rules Orthographic Normalization upiiij tsh valueiiqrij suggestiipzzr diagnostiiiryz primariiiyiy smalliiiqqi thyreiiprzw MID-Representation upiiij tsh valueiiqrij permitiji diagnostiiiryz primariiiyiy smalliiiqqi thyreiiprzw Thesaurus Semantic Normalization
17
Morphosaurus Thesaurus Features Only two semantic relations: Syntagmatical expansion: nephrotomiiqwjja = nephriikwjza + tomyiiqjqqa (To avoid known mis-segmentations, e.g. nephr + oto + mie) Ambiguous readings: seitiiyqyqa = lateraliijwira OR pagerijjrja Transforms IR relevant content to concept-like semantic identifiers. (MID = MorphoSaurus identifiers)
18
Morphoedit Lexicon Editor
21
State of the Project Domain: clinical language and lay expressions, partly Validated entries: 21,397 English, 22,053 German, 15,029 Portuguese. Automatically generated entries 8,992 Spanish subwords from Portuguese subwords
22
CLIR Experiments (OHSUMED) Manual translation of 106 English queries to German and Portuguese by medical experts Baseline: machine translation/bilingual dictionaries QTR Google-Translator to re-translate German/Portuguese queries to English additional search in a bilingual lexeme dictionary, derived from the UMLS-Metathesaurus. stemmed by the Porter stemming algorithm / stop word elimination MorphoSaurus: normalization of queries/documents MSI Boolean search engine: frequency and adjacency measure Results German:QTR: 68%, MSI: 93% Results Portuguese: QTR: 54%, MSI: 62% (RIAO04)
23
Multilingual MeSH Mapping Morpho-semantic normalization of 35,000 English, manual MeSH annotated Medline abstracts Statistical learning of indexing patterns Using indexing patterns for mapping of normalized English/German/Portuguese texts Results:gold standard human indexers English:33% (68%) German:30% (62%) Portuguese:27% (56%) (RIAO04) agreement with
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.