Download presentation
Presentation is loading. Please wait.
Published byAlicia Black Modified over 9 years ago
1
Equilibrium systems Chromatography systems Number of PCs original Mean centered Number of PCs original Mean centered 21 21 21 2 1 22 32
2
The rank of a product of two matrices X and Y is equal or smaller to the smallest of the rank of X and Y: Rank (X Y) ≤ min (rank (X), rank (Y)) A = C S
3
HA A - + H + [HA] = C t [H + ] [H + ] + K a [A - ] = C t K a [H + ] + K a [Int] =p [HA] + [A - ] = C t C t = p = [Int] [HA] + [A - ] = [Int] [HA] + [A - ] - [Int] = 0
4
? Determine the rank of data matrix of following hypothesis system (rank.mat file)
5
A Rank Deficiency problem and Its Solution
6
Rank deficient system = = Full rank system
7
Augmentation =
8
A rd C E = AsAs C E = E = AsAs C C Rank (A rd ) = 2 Rank (A s ) = 1 Rank (A rd ; A s ) = 3 Augmentation
10
123123 321321 0.5 123123 321321 ++ (-8) 000000 = Rank deficiency in C matrix
11
123123 321321 0.5 246246 642642 000000 Augmentation 123123 321321 0.5 246246 642642 000000
12
Rank deficiency in a system with two independent chemical processes HA A - + H + HB B - + H + [HA] [A-][A-] [HB] [B-][B-] HA A-A- HB B-B-
13
HAM.m file Spectrophotometric monitoring of pH- metric titration of mixture of two acids
19
HA A - + H + [HA] = C t1 [H + ] [H + ] + K a1 [A - ] = C t1 K a1 [H + ] + K a1 [HA] + [A - ] = ([HB] + [B - ]) C t1 = C t2 HB B - + H + [H + ] + K a2 [HB] = C t2 [H + ] [A - ] = C t2 K a2 [H + ] + K a2 [HB] + [B - ] = C t2
20
123123 321321 246246 642642 123123 321321 + + 000000 = 246246 642642 + 123123 321321 + 444444 = 246246 642642 + 888888 = 444444 888888 =(1/2) (-1/2)
21
Augmentation =
23
123123 321321 246246 642642 123123 321321 000000 000000 123123 321321 246246 642642 123123 321321 000000 000000
24
123123 321321 123123 321321 + 444444 444444 = 246246 642642 000000 000000 + 888888 000000 =
25
? Is it possible to solve rank deficiency in systems by exact same pK a values?
26
Non-linear data
27
Principal Component Analysis
28
Samples in two dimensional wavelength space
29
Non-homogeneous deviation in wavelength space
30
Principal Component Analysis
31
Samples in two dimensional wavelength space
32
? Use NLC.m file and create data matrix for two component system and investigate the effect of non- linearity on numbers of PCs
33
NLC.m file Non-linear calibration absorbance data matrix
37
Number of significant eigenvalues and evolutionary chemical processes
62
1.59150.00230.00000.0000 Singular values (0-6 sec)
63
2.45180.00690.00000.0000 Singular values (2-8 sec)
64
3.4849 0.0193 0.0001 0.0000 Singular values (4-10 sec)
65
4.5878 0.0488 0.0002 0.0000 Singular values (6-12 sec)
66
5.6211 0.1120 0.0008 0.0000 Singular values (8-14 sec)
67
6.4493 0.2323 0.0023 0.0000 Singular values (10-16 sec)
68
6.9869 0.4338 0.0060 0.0000 Singular values (12-18 sec)
69
7.2375 0.7233 0.0138 0.0000 Singular values (14-20 sec)
70
7.3157 1.0627 0.0279 0.0000 Singular values (16-22 sec)
71
7.4354 1.3499 0.0495 0.0000 Singular values (18-24 sec)
72
7.8152 1.4677 0.0752 0.0000 Singular values (20-26 sec)
73
8.5105 1.4042 0.0951 0.0000 Singular values (22-28 sec)
74
9.3713 1.2588 0.0963 0.0000 Singular values (24-30 sec)
75
10.1608 1.1141 0.0761 0.0000 Singular values (26-32 sec)
76
10.6552 0.9779 0.0476 0.0000 Singular values (28-34 sec)
77
10.6909 0.8265 0.0245 0.0000 Singular values (30-36 sec)
78
10.1926 0.6522 0.0108 0.0000 Singular values (32-38 sec)
79
9.1870 0.4713 0.0042 0.0000 Singular values (34-40 sec)
80
7.7941 0.3089 0.0014 0.0000 Singular values (36-42 sec)
81
6.1977 0.1830 0.0004 0.0000 Singular values (38-44 sec)
82
4.5999 0.0980 0.0001 0.0000 Singular values (40-46 sec)
83
3.1735 0.0475 0.0000 0.0000 Singular values (42-148 sec)
84
2.0275 0.0209 0.0000 0.0000 Singular values (44-50 sec)
85
FSW.m file Eigen analysis on moving fixed size window
90
? Use FSW.m file and investigate on pH-window of each component for H2A system (H2A.m file)
91
? Investigate the effects of selected window size on accuracy of determining the concentration window for each species
117
1.4327 0.0024 Singular values (0-2 sec)
118
2.2664 0.0083 0.0000 Singular values (0-4 sec)
119
3.2730 0.0231 0.0000 0.0000 Singular values (0-6 sec)
120
4.4044 0.0563 0.0001 0.0000 Singular values (0-8 sec)
121
5.5834 0.1245 0.0004 0.0000 Singular values (0-10 sec)
122
6.7299 0.2517 0.0012 0.0000 Singular values (0-12 sec)
123
7.7864 0.4668 0.0036 0.0000 Singular values (0-14 sec)
124
8.7323 0.7956 0.0099 0.0000 Singular values (0-16 sec)
125
9.5808 1.2484 0.0244 0.0000 Singular values (0-18 sec)
126
10.3637 1.8119 0.0552 0.0000 Singular values (0-20 sec)
127
11.1136 2.4512 0.1133 0.0000 Singular values (0-22 sec)
128
11.8506 3.1232 0.2110 0.0000 Singular values (0-24 sec)
129
12.5772 3.7923 0.3561 0.0000 Singular values (0-26 sec)
130
13.2808 4.4360 0.5455 0.0000 Singular values (0-28 sec)
131
13.9413 5.0402 0.7623 0.0000 Singular values (0-30 sec)
132
14.5360 5.5893 0.9812 0.0000 Singular values (0-32 sec)
133
15.0430 6.0633 1.1776 0.0000 Singular values (0-34 sec)
134
15.4449 6.4435 1.3359 0.0000 Singular values (0- 36 sec)
135
15.7348 6.7216 1.4512 0.0000 Singular values (0- 38 sec)
136
15.9215 6.9040 1.5268 0.0000 Singular values (0- 40 sec)
137
16.0273 7.0098 1.5713 0.0000 Singular values (0- 42 sec)
138
16.0794 7.0634 1.5942 0.0000 Singular values (0- 44 sec)
139
16.1015 7.0868 1.6044 0.0000 Singular values (0- 46 sec)
140
16.1096 7.0955 1.6083 0.0000 Singular values (0-48 sec)
141
16.1122 7.0983 1.6096 0.0000 Singular values (0-50 sec)
142
0.7231 0.0017 0.000 0.000 Singular values (50-48 sec)
143
1.2648 0.0060 0.0000 0 Singular values (50-46 sec)
144
2.0245 0.0164 0.0000 0.0000 Singular values (50-44 sec)
145
3.0143 0.0395 0.0000 0.0000 Singular values (50-42 sec)
146
4.2074 0.0865 0.0001 0.0000 Singular values (50-40 sec)
147
5.5408 0.1738 0.0003 0.0000 Singular values (50-38 sec)
148
6.9305 0.3215 0.0009 0.0000 Singular values (50-36 sec)
149
8.2934 0.5483 0.0029 0.0000 Singular values (50-34 sec)
150
9.5650 0.8639 0.0082 0.0000 Singular values (50-32 sec)
151
10.7064 1.2627 0.0213 0.0000 Singular values (50-30 sec)
152
11.7008 1.7245 0.0504 0.0000 Singular values (50-28 sec)
153
12.5455 2.2228 0.1080 0.0000 Singular values (50-26 sec)
154
13.2478 2.7381 0.2091 0.0000 Singular values (50-24 sec)
155
13.8235 3.2656 0.3639 0.0000 Singular values (50-22 sec)
156
14.2956 3.8130 0.5684 0.0000 Singular values (50-20 sec)
157
14.6900 4.3880 0.8003 0.0000 Singular values (50-18 sec)
158
15.0288 4.9811 1.0266 0.0000 Singular values (50-16 sec)
159
15.3247 5.5579 1.2200 0.0000 Singular values (50-14 sec)
160
15.5782 6.0693 1.3680 0.0000 Singular values (50-12 sec)
161
15.7824 6.4753 1.4711 0.0000 Singular values (50-10 sec)
162
15.9307 6.7613 1.5372 0.0000 Singular values (50-8 sec)
163
16.0254 6.9387 1.5759 0.0000 Singular values (50-6 sec)
164
16.0776 7.0349 1.5963 0.0000 Singular values (50- 4 sec)
165
16.1022 7.0801 1.6058 0.0000 Singular values (50-2 sec)
166
16.1122 7.0983 1.6096 0.0000 Singular values (50-0 sec)
167
EFA.m file Forward and backward eigen analysis
175
? Investigate the variation of eigenvalues in an evolutionary chemical process in the presence of noise
176
? Show that the eigenvalue analysis can be used for estimating the selective wavelength range for each chemical species
183
Principal Component Regression (PCR) PCR is simply PCA followed by a regression step A= C E = S L AC E = S L = A= C E = (S R) (R -1 L) C = S R CS R = S r = c1c1
184
A data matrix can be represented by its score matrix A regression of score matrix against one or several dependent variables is possible, provided that scores corresponding to small eigenvalues are omitted This regression gives no matrix inversion problem PCR has the full-spectrum advantages of the CLS method PCR has the ILS advantage of being able to perform the analysis one chemical components at a time while avoiding the ILS wavelength selection problem
185
c = S b Calibration and Prediction Steps in PCR = c1c1 n 1 S n r b r 1 b = ( S T S) -1 S T c Calibration Step AxAx m p L p r r m SxSx = Prediction Step S x = A x L c x = S x b
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.