Presentation is loading. Please wait.

Presentation is loading. Please wait.

Equilibrium systems Chromatography systems Number of PCs original Mean centered Number of PCs original Mean centered 21 21 21 2 1 22 32.

Similar presentations


Presentation on theme: "Equilibrium systems Chromatography systems Number of PCs original Mean centered Number of PCs original Mean centered 21 21 21 2 1 22 32."— Presentation transcript:

1 Equilibrium systems Chromatography systems Number of PCs original Mean centered Number of PCs original Mean centered 21 21 21 2 1 22 32

2 The rank of a product of two matrices X and Y is equal or smaller to the smallest of the rank of X and Y: Rank (X Y) ≤ min (rank (X), rank (Y)) A = C S

3 HA A - + H + [HA] = C t [H + ] [H + ] + K a [A - ] = C t K a [H + ] + K a [Int] =p [HA] + [A - ] = C t C t =  p =  [Int] [HA] + [A - ] =  [Int] [HA] + [A - ] -  [Int] = 0

4 ? Determine the rank of data matrix of following hypothesis system (rank.mat file)

5 A Rank Deficiency problem and Its Solution

6 Rank deficient system = = Full rank system

7 Augmentation =

8 A rd C E = AsAs C E = E = AsAs C C Rank (A rd ) = 2 Rank (A s ) = 1 Rank (A rd ; A s ) = 3 Augmentation

9

10 123123 321321 0.5 123123 321321 ++ (-8) 000000 = Rank deficiency in C matrix

11 123123 321321 0.5 246246 642642 000000 Augmentation 123123 321321 0.5 246246 642642 000000

12 Rank deficiency in a system with two independent chemical processes HA A - + H + HB B - + H + [HA] [A-][A-] [HB] [B-][B-] HA A-A- HB B-B-

13 HAM.m file Spectrophotometric monitoring of pH- metric titration of mixture of two acids

14

15

16

17

18

19 HA A - + H + [HA] = C t1 [H + ] [H + ] + K a1 [A - ] = C t1 K a1 [H + ] + K a1 [HA] + [A - ] =  ([HB] + [B - ]) C t1 =  C t2 HB B - + H + [H + ] + K a2 [HB] = C t2 [H + ] [A - ] = C t2 K a2 [H + ] + K a2 [HB] + [B - ] = C t2

20 123123 321321 246246 642642 123123 321321 + + 000000 = 246246 642642 + 123123 321321 + 444444 = 246246 642642 + 888888 = 444444 888888 =(1/2) (-1/2)

21 Augmentation =

22

23 123123 321321 246246 642642 123123 321321 000000 000000 123123 321321 246246 642642 123123 321321 000000 000000

24 123123 321321 123123 321321 + 444444 444444 = 246246 642642 000000 000000 + 888888 000000 =

25 ? Is it possible to solve rank deficiency in systems by exact same pK a values?

26 Non-linear data

27 Principal Component Analysis

28 Samples in two dimensional wavelength space

29 Non-homogeneous deviation in wavelength space

30 Principal Component Analysis

31 Samples in two dimensional wavelength space

32 ? Use NLC.m file and create data matrix for two component system and investigate the effect of non- linearity on numbers of PCs

33 NLC.m file Non-linear calibration absorbance data matrix

34

35

36

37 Number of significant eigenvalues and evolutionary chemical processes

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62 1.59150.00230.00000.0000 Singular values (0-6 sec)

63 2.45180.00690.00000.0000 Singular values (2-8 sec)

64 3.4849 0.0193 0.0001 0.0000 Singular values (4-10 sec)

65 4.5878 0.0488 0.0002 0.0000 Singular values (6-12 sec)

66 5.6211 0.1120 0.0008 0.0000 Singular values (8-14 sec)

67 6.4493 0.2323 0.0023 0.0000 Singular values (10-16 sec)

68 6.9869 0.4338 0.0060 0.0000 Singular values (12-18 sec)

69 7.2375 0.7233 0.0138 0.0000 Singular values (14-20 sec)

70 7.3157 1.0627 0.0279 0.0000 Singular values (16-22 sec)

71 7.4354 1.3499 0.0495 0.0000 Singular values (18-24 sec)

72 7.8152 1.4677 0.0752 0.0000 Singular values (20-26 sec)

73 8.5105 1.4042 0.0951 0.0000 Singular values (22-28 sec)

74 9.3713 1.2588 0.0963 0.0000 Singular values (24-30 sec)

75 10.1608 1.1141 0.0761 0.0000 Singular values (26-32 sec)

76 10.6552 0.9779 0.0476 0.0000 Singular values (28-34 sec)

77 10.6909 0.8265 0.0245 0.0000 Singular values (30-36 sec)

78 10.1926 0.6522 0.0108 0.0000 Singular values (32-38 sec)

79 9.1870 0.4713 0.0042 0.0000 Singular values (34-40 sec)

80 7.7941 0.3089 0.0014 0.0000 Singular values (36-42 sec)

81 6.1977 0.1830 0.0004 0.0000 Singular values (38-44 sec)

82 4.5999 0.0980 0.0001 0.0000 Singular values (40-46 sec)

83 3.1735 0.0475 0.0000 0.0000 Singular values (42-148 sec)

84 2.0275 0.0209 0.0000 0.0000 Singular values (44-50 sec)

85 FSW.m file Eigen analysis on moving fixed size window

86

87

88

89

90 ? Use FSW.m file and investigate on pH-window of each component for H2A system (H2A.m file)

91 ? Investigate the effects of selected window size on accuracy of determining the concentration window for each species

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117 1.4327 0.0024 Singular values (0-2 sec)

118 2.2664 0.0083 0.0000 Singular values (0-4 sec)

119 3.2730 0.0231 0.0000 0.0000 Singular values (0-6 sec)

120 4.4044 0.0563 0.0001 0.0000 Singular values (0-8 sec)

121 5.5834 0.1245 0.0004 0.0000 Singular values (0-10 sec)

122 6.7299 0.2517 0.0012 0.0000 Singular values (0-12 sec)

123 7.7864 0.4668 0.0036 0.0000 Singular values (0-14 sec)

124 8.7323 0.7956 0.0099 0.0000 Singular values (0-16 sec)

125 9.5808 1.2484 0.0244 0.0000 Singular values (0-18 sec)

126 10.3637 1.8119 0.0552 0.0000 Singular values (0-20 sec)

127 11.1136 2.4512 0.1133 0.0000 Singular values (0-22 sec)

128 11.8506 3.1232 0.2110 0.0000 Singular values (0-24 sec)

129 12.5772 3.7923 0.3561 0.0000 Singular values (0-26 sec)

130 13.2808 4.4360 0.5455 0.0000 Singular values (0-28 sec)

131 13.9413 5.0402 0.7623 0.0000 Singular values (0-30 sec)

132 14.5360 5.5893 0.9812 0.0000 Singular values (0-32 sec)

133 15.0430 6.0633 1.1776 0.0000 Singular values (0-34 sec)

134 15.4449 6.4435 1.3359 0.0000 Singular values (0- 36 sec)

135 15.7348 6.7216 1.4512 0.0000 Singular values (0- 38 sec)

136 15.9215 6.9040 1.5268 0.0000 Singular values (0- 40 sec)

137 16.0273 7.0098 1.5713 0.0000 Singular values (0- 42 sec)

138 16.0794 7.0634 1.5942 0.0000 Singular values (0- 44 sec)

139 16.1015 7.0868 1.6044 0.0000 Singular values (0- 46 sec)

140 16.1096 7.0955 1.6083 0.0000 Singular values (0-48 sec)

141 16.1122 7.0983 1.6096 0.0000 Singular values (0-50 sec)

142 0.7231 0.0017 0.000 0.000 Singular values (50-48 sec)

143 1.2648 0.0060 0.0000 0 Singular values (50-46 sec)

144 2.0245 0.0164 0.0000 0.0000 Singular values (50-44 sec)

145 3.0143 0.0395 0.0000 0.0000 Singular values (50-42 sec)

146 4.2074 0.0865 0.0001 0.0000 Singular values (50-40 sec)

147 5.5408 0.1738 0.0003 0.0000 Singular values (50-38 sec)

148 6.9305 0.3215 0.0009 0.0000 Singular values (50-36 sec)

149 8.2934 0.5483 0.0029 0.0000 Singular values (50-34 sec)

150 9.5650 0.8639 0.0082 0.0000 Singular values (50-32 sec)

151 10.7064 1.2627 0.0213 0.0000 Singular values (50-30 sec)

152 11.7008 1.7245 0.0504 0.0000 Singular values (50-28 sec)

153 12.5455 2.2228 0.1080 0.0000 Singular values (50-26 sec)

154 13.2478 2.7381 0.2091 0.0000 Singular values (50-24 sec)

155 13.8235 3.2656 0.3639 0.0000 Singular values (50-22 sec)

156 14.2956 3.8130 0.5684 0.0000 Singular values (50-20 sec)

157 14.6900 4.3880 0.8003 0.0000 Singular values (50-18 sec)

158 15.0288 4.9811 1.0266 0.0000 Singular values (50-16 sec)

159 15.3247 5.5579 1.2200 0.0000 Singular values (50-14 sec)

160 15.5782 6.0693 1.3680 0.0000 Singular values (50-12 sec)

161 15.7824 6.4753 1.4711 0.0000 Singular values (50-10 sec)

162 15.9307 6.7613 1.5372 0.0000 Singular values (50-8 sec)

163 16.0254 6.9387 1.5759 0.0000 Singular values (50-6 sec)

164 16.0776 7.0349 1.5963 0.0000 Singular values (50- 4 sec)

165 16.1022 7.0801 1.6058 0.0000 Singular values (50-2 sec)

166 16.1122 7.0983 1.6096 0.0000 Singular values (50-0 sec)

167 EFA.m file Forward and backward eigen analysis

168

169

170

171

172

173

174

175 ? Investigate the variation of eigenvalues in an evolutionary chemical process in the presence of noise

176 ? Show that the eigenvalue analysis can be used for estimating the selective wavelength range for each chemical species

177

178

179

180

181

182

183 Principal Component Regression (PCR) PCR is simply PCA followed by a regression step A= C E = S L AC E = S L = A= C E = (S R) (R -1 L) C = S R CS R = S r = c1c1

184 A data matrix can be represented by its score matrix A regression of score matrix against one or several dependent variables is possible, provided that scores corresponding to small eigenvalues are omitted This regression gives no matrix inversion problem PCR has the full-spectrum advantages of the CLS method PCR has the ILS advantage of being able to perform the analysis one chemical components at a time while avoiding the ILS wavelength selection problem

185 c = S b Calibration and Prediction Steps in PCR = c1c1 n 1 S n r b r 1 b = ( S T S) -1 S T c Calibration Step AxAx m p L p r r m SxSx = Prediction Step S x = A x L c x = S x b


Download ppt "Equilibrium systems Chromatography systems Number of PCs original Mean centered Number of PCs original Mean centered 21 21 21 2 1 22 32."

Similar presentations


Ads by Google