Presentation is loading. Please wait.

Presentation is loading. Please wait.

Asteroseismology with A-STEP The sun from the South Pole Grec, Fossat & Pomerantz, 1980, Nature, 288, 541.

Similar presentations


Presentation on theme: "Asteroseismology with A-STEP The sun from the South Pole Grec, Fossat & Pomerantz, 1980, Nature, 288, 541."— Presentation transcript:

1

2 Asteroseismology with A-STEP

3

4 The sun from the South Pole Grec, Fossat & Pomerantz, 1980, Nature, 288, 541

5 3D oscillations – stars radial modes Cepheids P 1 /P 0 = 0.7 P 1 /P 0 = 0.33

6 Asteroseismology

7 Angular structure of the modes n = number of radial nodes = total number of surface nodes m = number of surface nodes that are lines of longitude – m = number of surface nodes that are lines of latitude

8 Dipole modes l=1, m=0 l=1, m=+1

9 l=2, m=-1 l=2, m=-2l=2, m=0 Quadrupole modes

10 Rotation of the sun

11 p modes and g modes p modes (n, ) = (8,100), (8,2) g mode (n, ) = (10,5) Gough et al., 1996, Science, 272, 1281

12 p modes and g modes J. P. Cox, 1980, Theory of Stellar Pulsation, Princeton University Press.

13 The sun as a star - BiSON

14 The sun as a star - GOLF large separationsmall separation

15 An asteroseismic HR diagram

16 Solar-like Oscillations in  Centauri UVES & UCLES 42 oscillation frequencies ℓ = 1-3 Mode lifetimes only 1-2 days Noise level = 2 cm s -1 ! Bedding, T., et al. 2004, ApJ, 614, 380

17 From G. Houdek Amplitudes in velocity between 10 to 250 cm/s Amplitudes in intensity are of the order of 1-10 ppm

18

19 roAp

20 HR 1217 WET Xcov20 Kurtz et al., 2005, MNRAS, 358, 651

21 HR 1217 WET Xcov20 Kurtz et al., 2005, MNRAS, 358, 651

22 p modes:  Cephei stars

23 HD 129929 = V836 Cen 20-yr multicolour photometry Core overshooting with a OV = 0.1 Non-rigid rotation: 4 times faster near core Aerts et al., 2003, Science, 300, 926 Asteroseismology of HD129929: Core overshooting and nonrigid rotation

24 p modes: EC 14026 stars - sdBV

25 PG 1336 + 018

26  Dor – mixed-mode pulsators

27 HD 49434

28 White dwarfs – g-mode pulsators

29 BPM 37093

30 A giant solar-like oscillator http://www.lcse.umn.edu/

31 COROT Field of view Adaptation of COROTLUX software for variables Input sample: Besançon model ~ 25000 stars

32 Pulsation in EXO FoV  Cep : 2 SPB : 29  Sct : 2500  Dor : 3200 Hyb : 2200 Ceph : 1 LP : 46 Fraction of variables: 30%?

33 Simulation of CCD photometry of a Cen A and B Such simulations are useful for study of the different noise contributions: smearing, guiding read-out noise, cosmic,...

34 Stellar limitation Photon noise< 10 -4 up to M=15 Stellar noiselow frequencies Activitysee S. Aigrain Instrumental limitation Read-out noiseLower than photon noise for M<16 Thermal noisenegligible Guiding noise PRNU~1%, Cosmic raysTBE Gain variationno data. Global/pixel Shutter noise1- 2 ms -> Ti > 30 s

35 The amplitude of the oscillations changes with the wavelength VIRGO data

36 Atmospheric limitations of photometric observations Transparency fluctuations Interruptions (clouds) Scintillation Diffused light These values are still uncertain: A-STEP will contribute to the site qualification No dust, low humidity, snow < 15 % Few auroras, moon Better than anywhere else, but still limiting

37 A few words about atmospheric turbulence and scintillation From Dravins et al, 1997

38 Optical/interferometric parameters Integrated from h=8m Balloons Seeing (arcs) 0.4  0 (ms) 11.2  0 (arcs) 5.3 Integrated from h =30m Balloons (10) Dimms (March- May 05) Seeing (arcs) 1.61.2  0 (ms) 7.0  0 (arcs) 5.33.6 AASTINO 2004 data 0.27 ‘’ 7.9 5.7 ‘’ s Interferometric coherence times    = 0.31 r 0 / v ~7 ms    = 0.31 L 0 / v ~775 ms L 0 = 10 m GSM h=3.5m 1 h > 30 m 3 h > 0 m  opd

39 Optical/interferometric parameters Integrated from h=8m Balloons Seeing (arcs) 0.4  0 (ms) 11.2  0 (arcs) 5.3 Integrated from h =30m Balloons (10) Dimms (March- May 05) Seeing (arcs) 1.61.2  0 (ms) 7.0  0 (arcs) 5.33.6 AASTINO 2004 data 0.27 ‘’ 7.9 5.7 ‘’ s Interferometric coherence times    = 0.31 r 0 / v ~7 ms    = 0.31 L 0 / v ~775 ms L 0 = 10 m GSM h=3.5m 1 h > 30 m 3 h > 0 m  opd

40

41 Conclusion Asteroseismology benefits a lot from continuity A-STEP very similar to COROT EXO Field Unlike COROT, the full dataset can be recovered roAp,  Dor are top-priority programs PMS  Scuti, Red Giants to be investigated Solar-type stars ?

42 Requirements 30 – 60 s integration time 90 days continuous observations Good guiding Precise timing Best telescope height still unknown Color photometry allow mode identification


Download ppt "Asteroseismology with A-STEP The sun from the South Pole Grec, Fossat & Pomerantz, 1980, Nature, 288, 541."

Similar presentations


Ads by Google