Download presentation
Presentation is loading. Please wait.
Published bySuzanna Dalton Modified over 9 years ago
1
6.1 - Polynomials
2
Monomial
3
Monomial – 1 term
4
Monomial – 1 term; a variable
5
Monomial – 1 term; a variable, number times a variable
6
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables.
7
Operations with Monomials:
8
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3
9
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3
10
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x
11
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x
12
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x·x·x·x
13
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x·x·x·x
14
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x·x·x·x x 7
15
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x·x·x·x x 7 Ex. 2 Simplify x 5 x 3
16
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x·x·x·x x 7 Ex. 2 Simplify x 5 x 3
17
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x·x·x·x x 7 Ex. 2 Simplify x 5 x 3 x·x·x·x·x
18
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x·x·x·x x 7 Ex. 2 Simplify x 5 x 3 x·x·x·x·x
19
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x·x·x·x x 7 Ex. 2 Simplify x 5 x 3 x·x·x·x·x x·x·x
20
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 x·x·x·x·x·x·x x 7 Ex. 2 Simplify x 5 x 3 x·x·x·x·x x·x·x x 2
21
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 OR x 4 ·x 3 x·x·x·x·x·x·x x 7 Ex. 2 Simplify x 5 x 3 x·x·x·x·x x·x·x x 2
22
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 OR x 4 ·x 3 x·x·x·x·x·x·x x 4+3 x 7 Ex. 2 Simplify x 5 x 3 x·x·x·x·x x·x·x x 2
23
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 OR x 4 ·x 3 x·x·x·x·x·x·x x 4+3 x 7 Ex. 2 Simplify x 5 x 3 x·x·x·x·x x·x·x x 2
24
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 OR x 4 ·x 3 x·x·x·x·x·x·x x 4+3 x 7 Ex. 2 Simplify x 5 x 5 x 3 x 3 x·x·x·x·x x·x·x x 2
25
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 OR x 4 ·x 3 x·x·x·x·x·x·x x 4+3 x 7 Ex. 2 Simplify x 5 x 5 x 3 x 3 x·x·x·x·xx 5-3 x·x·x x 2
26
Monomial – 1 term; a variable, number times a variable, or multiple of numbers and variables. Operations with Monomials: Ex. 1 Simplify x 4 ·x 3 OR x 4 ·x 3 x·x·x·x·x·x·x x 4+3 x 7 Ex. 2 Simplify x 5 x 5 x 3 x 3 x·x·x·x·xx 5-3 x·x·x x 2 x 2
27
Ex. 3 Simplify (y 6 ) 3
29
(y 6 )(y 6 )(y 6 )
30
Ex. 3 Simplify (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6+6+6
31
Ex. 3 Simplify (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6+6+6 y 18
32
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6+6+6 y 18
33
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18
34
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18
35
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 )
36
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 )
37
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)
38
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)
39
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)
40
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)
41
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)(y 3 ·y -5 )
42
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)(y 3 ·y -5 ) 28x 4 y -2
43
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)(y 3 ·y -5 ) 28x 4 y -2 28x 4 y 2
44
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)(y 3 ·y -5 ) 28x 4 y -2 28x 4 y 2 Ex. 5 Simplify -5x 3 y 3 z 4 20x 3 y 7 z 4
45
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)(y 3 ·y -5 ) 28x 4 y -2 28x 4 y 2 Ex. 5 Simplify -5x 3 y 3 z 4 20x 3 y 7 z 4 -5 · x 3-3 · y 3-7 · z 4-4 20
46
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)(y 3 ·y -5 ) 28x 4 y -2 28x 4 y 2 Ex. 5 Simplify -5x 3 y 3 z 4 20x 3 y 7 z 4 -5 · x 3-3 · y 3-7 · z 4-4 20 -¼·x 0 ·y -4 ·z 0
47
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)(y 3 ·y -5 ) 28x 4 y -2 28x 4 y 2 Ex. 5 Simplify -5x 3 y 3 z 4 20x 3 y 7 z 4 -5 · x 3-3 · y 3-7 · z 4-4 20 -¼·x 0 ·y -4 ·z 0 -¼·1·y -4 ·1
48
Ex. 3 Simplify (y 6 ) 3 OR (y 6 ) 3 (y 6 )(y 6 )(y 6 ) y 6·3 y 6+6+6 y 18 y 18 Ex. 4 Simplify (7x 3 y -5 )(4xy 3 ) (7·4)(x 3 ·x)(y 3 ·y -5 ) 28x 4 y -2 28x 4 y 2 Ex. 5 Simplify -5x 3 y 3 z 4 20x 3 y 7 z 4 -5 · x 3-3 · y 3-7 · z 4-4 20 -¼·x 0 ·y -4 ·z 0 -¼·1·y -4 ·1 4y 4
49
Polynomials
50
Polynomials – Expressions with more than 1 term.
51
Degree
52
Polynomials – Expressions with more than 1 term. Degree – highest combination of exponents on single term.
53
Polynomials – Expressions with more than 1 term. Degree – highest combination of exponents on single term. Ex. 1 Determine the degree of the polynomial.
54
Polynomials – Expressions with more than 1 term. Degree – highest combination of exponents on single term. Ex. 1 Determine the degree of the polynomial. x 3 y 5 – 9x 4
55
Polynomials – Expressions with more than 1 term. Degree – highest combination of exponents on single term. Ex. 1 Determine the degree of the polynomial. x 3 y 5 – 9x 4
56
Polynomials – Expressions with more than 1 term. Degree – highest combination of exponents on single term. Ex. 1 Determine the degree of the polynomial. x 3 y 5 – 9x 4 degree = 8
57
Operations with Polynomials:
58
Operations with Polynomials: Ex. 1 Simplify (5y + 3y 2 ) + (-8y - 6y 2 )
59
Operations with Polynomials: Ex. 1 Simplify (5y + 3y 2 ) + (-8y - 6y 2 ) 5y - 8y + 3y 2 - 6y 2
60
Operations with Polynomials: Ex. 1 Simplify (5y + 3y 2 ) + (-8y - 6y 2 ) 5y - 8y + 3y 2 - 6y 2 -3y - 3y 2
61
Operations with Polynomials: Ex. 1 Simplify (5y + 3y 2 ) + (-8y - 6y 2 ) 5y - 8y + 3y 2 - 6y 2 -3y - 3y 2 Ex. 2 Simplify (9r 2 + 6r + 16) – (8r 2 – 7r + 10)
62
Operations with Polynomials: Ex. 1 Simplify (5y + 3y 2 ) + (-8y - 6y 2 ) 5y - 8y + 3y 2 - 6y 2 -3y - 3y 2 Ex. 2 Simplify (9r 2 + 6r + 16) – (8r 2 – 7r + 10) (9r 2 + 6r + 16) + (-8r 2 + 7r – 10)
63
Operations with Polynomials: Ex. 1 Simplify (5y + 3y 2 ) + (-8y - 6y 2 ) 5y - 8y + 3y 2 - 6y 2 -3y - 3y 2 Ex. 2 Simplify (9r 2 + 6r + 16) – (8r 2 – 7r + 10) (9r 2 + 6r + 16) + (-8r 2 + 7r – 10) 9r 2 – 8r 2 + 6r + 7r + 16 – 10
64
Operations with Polynomials: Ex. 1 Simplify (5y + 3y 2 ) + (-8y - 6y 2 ) 5y - 8y + 3y 2 - 6y 2 -3y - 3y 2 Ex. 2 Simplify (9r 2 + 6r + 16) – (8r 2 – 7r + 10) (9r 2 + 6r + 16) + (-8r 2 + 7r – 10) 9r 2 – 8r 2 + 6r + 7r + 16 – 10 r 2 + 13r + 6
65
Ex. 3 Simplify 4b(cb – zd)
66
4b·cb – 4b·zd
67
Ex. 3 Simplify 4b(cb – zd) 4b·cb – 4b·zd 4b 2 c – 4bdz
68
Ex. 3 Simplify 4b(cb – zd) 4b·cb – 4b·zd 4b 2 c – 4bdz Ex. 4 Simplify (3x + 8)(2x + 6)
69
Ex. 3 Simplify 4b(cb – zd) 4b·cb – 4b·zd 4b 2 c – 4bdz Ex. 4 Simplify (3x + 8)(2x + 6) 3x(2x + 6) + 8(2x + 6)
70
Ex. 3 Simplify 4b(cb – zd) 4b·cb – 4b·zd 4b 2 c – 4bdz Ex. 4 Simplify (3x + 8)(2x + 6) 3x(2x + 6) + 8(2x + 6) 3x·2x + 3x·6 + 8·2x + 8·6
71
Ex. 3 Simplify 4b(cb – zd) 4b·cb – 4b·zd 4b 2 c – 4bdz Ex. 4 Simplify (3x + 8)(2x + 6) 3x(2x + 6) + 8(2x + 6) 3x·2x + 3x·6 + 8·2x + 8·6 3·2·x·x + 3·6·x + 8·2·x + 8·6
72
Ex. 3 Simplify 4b(cb – zd) 4b·cb – 4b·zd 4b 2 c – 4bdz Ex. 4 Simplify (3x + 8)(2x + 6) 3x(2x + 6) + 8(2x + 6) 3x·2x + 3x·6 + 8·2x + 8·6 3·2·x·x + 3·6·x + 8·2·x + 8·6 6x 2 + 18x + 16x + 48
73
Ex. 3 Simplify 4b(cb – zd) 4b·cb – 4b·zd 4b 2 c – 4bdz Ex. 4 Simplify (3x + 8)(2x + 6) 3x(2x + 6) + 8(2x + 6) 3x·2x + 3x·6 + 8·2x + 8·6 3·2·x·x + 3·6·x + 8·2·x + 8·6 6x 2 + 18x + 16x + 48 6x 2 + 34x + 48
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.