Presentation is loading. Please wait.

Presentation is loading. Please wait.

Crustal velocity and anisotropy temporal variations at Etna volcano (1) Istituto Nazionale di Geofisica e Vulcanologia, sezione di Napoli, Italy (2) Seismology.

Similar presentations


Presentation on theme: "Crustal velocity and anisotropy temporal variations at Etna volcano (1) Istituto Nazionale di Geofisica e Vulcanologia, sezione di Napoli, Italy (2) Seismology."— Presentation transcript:

1 Crustal velocity and anisotropy temporal variations at Etna volcano (1) Istituto Nazionale di Geofisica e Vulcanologia, sezione di Napoli, Italy (2) Seismology and Computational Rock Physics Lab., School of Geological Sciences, University College Dublin, Ireland (3) Istituto Nazionale di Geofisica e Vulcanologia, sezione di Pisa, Italy Zaccarelli L..(1), Pandolfi D.(2), Bianco F.(1), Saccorotti G.(3), Bean C.J.(2), Del Pezzo E.(1)

2 temporal changes in the seismic wave propagation characteristics due to Stress field time variations 2 techniques: Coda Wave Interferometry (CWI)  velocity variations Shear Wave Splitting analysis (SWS)  anisotropy changes high resolution in detecting small changes in the parameter estimates How to be sure about the temporal (no spatial) effect?

3 Doublets or multiplets events recorded at the same station similar waveforms cross-correlation max. > 0.9 almost same locations hypocentral distance < 100 m  same source & ray path doublet changes reflect time variation of the medium elastic properties Poupinet et al., 1984 Geller and Mueller, 1980

4 CWI & SWS applications in volcanic environments 2002 - 2003 Etna eruption NE fissure: 28 Oct 2002 – 5 Nov 2002 seismic records: 31 Oct 2002 – 4 Feb 2003 Broad Band seismic stations: high dynamics, continuous digital acquisition 2 km

5 d1-d7 small volume  homogeneous Data set: 1124 VT recorded  11 doublets

6 Coda Wave Interferometry discriminates among: source displacements scatterer movements velocity variations Cross-correlation of subsequent coda portions i  (i) = time shift = mean travel time perturbation

7 CWI technique least squares estimation over those points visually aligned  (  v / v)  - (  /  )  (i) = - (  v/v)  i + q

8 T d = time delay between the 2 qS-waves   crack system characteristics (density & geometry)  = qS1 polarization  stress field main direction Shear Wave Splitting analysis describes the crustal anisotropy field through 2 observables:

9 SWS analysis rotation along   – diagonalization of the covariance matrix T d – cross correlation of fast and slow components

10 CWI – percentage velocity variations

11 SWS –  and T n =T d /D   90  N = EW oriented  background value  overpressurized system

12 Results doubletsCWISWS t 1 – t 2 vvTnTn d131 Oct 10:25 – 3 Nov 06:02 +- d231 Oct 12:50 – 2 Nov 11:20 +- d31 Nov 02:11 – 3 Nov 04:26 ++ d41 Nov 07:49 – 4 Nov 12:44 -+ d52 Nov 11:20 – 4 Nov 11:19 -+ d64 Nov 09:52 – 4 Nov 12:58 -+ d74 Nov 10:31 – 4 Nov 10:37 +- TREND INVERSION on 1–3 November

13 Comparing CWI-SWS mean doublet percentage variations per day NE fissure eruption end

14 CONCLUSIONS 3 – 4 days before the NE fissure eruption’s ending:  v/v   Td/Td  We observe stress  fluid content  We interpret  #  cracks

15 Conceptual model 1.empting of the plumbing system 3.fluid attraction from the surrounding rocks 2.depressurization RELAXATION + FLUID MIGRATION CWI and SWS analysis are sensitive to even small stress field variations  indicator of crustal stress state in time v and Td temporal trends change before the start and /or the end eruptive activity  volcano monitoring and eruption forecasting


Download ppt "Crustal velocity and anisotropy temporal variations at Etna volcano (1) Istituto Nazionale di Geofisica e Vulcanologia, sezione di Napoli, Italy (2) Seismology."

Similar presentations


Ads by Google