Download presentation
Presentation is loading. Please wait.
Published byCameron Grant Modified over 9 years ago
1
Splash Screen
2
Lesson Menu Five-Minute Check (over Lesson 14–4) Then/Now New Vocabulary Example 1:Solve Equations for a Given Interval Example 2:Infinitely Many Solutions Example 3:Real-World Example: Solve Trigonometric Equations Example 4:Determine Whether a Solution Exists Example 5:Solve Trigonometric Equations by Using Identities
3
Over Lesson 14–4 A.A B.B C.C D.D 5-Minute Check 1 Find the exact value of sin 2 when cos = – and 180° < < 270°. __ 7 8 A. B. C. D.
4
Over Lesson 14–4 A.A B.B C.C D.D 5-Minute Check 2 A. B. C. D.
5
Over Lesson 14–4 A.A B.B C.C D.D 5-Minute Check 3 Find the exact value of sin 67.5° by using half-angle formulas. A. B. C. D.
6
Over Lesson 14–4 A.A B.B C.C D.D 5-Minute Check 4 Find the exact value of cos 22.5° by using double-angle formulas. A. B. C. D.
7
Over Lesson 14–4 A.A B.B C.C D.D 5-Minute Check 5 Find the exact value of tan by using double-angle formulas. A. B. C. D.
8
Over Lesson 14–4 A.A B.B C.C D.D 5-Minute Check 6 A.sin 2 x B.cos 2 x C.sec 2 x D.csc 2 x Simplify the expression tan x (cot x + tan x).
9
Then/Now You verified trigonometric identities. (Lessons 14–2 through 14–4) Solve trigonometric equations. Find extraneous solutions from trigonometric equations.
10
Vocabulary trigonometric equations
11
Example 1 Solve Equations for a Given Interval Solve 2cos 2 – 1 = sin if 0 ≤ 180 . 2cos 2 – 1=sin Original equation 2(1 – sin 2 ) – 1 – sin =0Subtract sin from each side. 2 – 2 sin 2 – 1 – sin =0Distributive Property –2 sin 2 – sin + 1=0Simplify. 2 sin 2 + sin – 1=0Divide each side by –1. (2 sin – 1)(sin + 1)=0Factor.
12
Example 1 Solve Equations for a Given Interval 2 sin – 1=0 sin + 1 = 0 Answer: Since 0° ≤ ≤ 180°, the solutions are 30°, and 150°. 2 sin =1 sin = –1 =30° or 150° Now use the Zero Product Property. = 270°
13
A.A B.B C.C D.D Example 1 A.0°, 90°, 180° B.0°, 180°, 270° C.90°, 180°, 270° D.0°, 90°, 270° Find all solutions of sin 2 + cos 2 – cos = 0 for the interval 0 ≤ ≤ 360 .
14
Example 2 Infinitely Many Solutions Look at the graph of y = cos – sin 2 to find solutions of cos – sin 2 = – A. Solve cos + = sin 2 for all values of if is measured in degrees.
15
Example 2 Infinitely Many Solutions Answer: 60° + k ● 360° and 300° + k ● 360°, where k is measured in degrees. The solutions are 60°, 300°, and so on, and –60°, –300°, and so on. The period of the function is 360°. So the solutions can be written as 60° + k ● 360° and 300° + k ● 360°, where k is measured in degrees.
16
Example 2 Infinitely Many Solutions 2cos = –1 B. Solve 2cos = –1 for all values of if is measured in radians.
17
Example 2 Infinitely Many Solutions Answer:, where k is any integer. The solutions are, and so on, and, and so on. The period of the cosine function is 2 radians. So the solutions can be written as, where k is any integer.
18
A.A B.B C.C D.D Example 2 A. Solve cos 2 sin + 1 = 0 for all values of if is measured in degrees. A.0° + k ● 360° and 45° + k ● 360° where k is any integer B.45° + k ● 360° where k is any integer C.0° + k ● 360° and 90° + k ● 360° where k is any integer D.90° + k ● 360° where k is any integer
19
A.A B.B C.C D.D Example 2 B. Solve 2 sin = –2 for all values of if is measured in radians. A. B. C. D.
20
Example 3 Solve Trigonometric Equations AMUSEMENT PARKS When you ride a Ferris wheel that has a diameter of 40 meters and turns at a rate of 1.5 revolutions per minute, the height above the ground, in meters, of your seat after t minutes can be modeled by the equation h = 21 – 20 cos 3 t. How long after the Ferris wheel starts will your seat first be meters above the ground?
21
Example 3 Solve Trigonometric Equations Original equation Replace h with Subtract 21 from each side. Divide each side by –20. Take the Arccosine.
22
Example 3 Solve Trigonometric Equations Divide each side by 3 . The Arccosine of Answer:
23
A.A B.B C.C D.D Example 3 A.about 7 seconds B.about 10 seconds C.about 13 seconds D.about 16 seconds AMUSEMENT PARKS When you ride a Ferris wheel that has a diameter of 40 meters and turns at a rate of 1.5 revolutions per minute, the height above the ground, in meters, of your seat after t minutes can be modeled by the equation h = 21 – 20 cos 3 t. How long after the Ferris wheel starts will your seat first be 11 meters above the ground?
24
Example 4 Determine Whether a Solution Exists A. Solve the equation sin cos = cos 2 if 0 ≤ ≤ 2 . sin cos = cos 2 Original equation sin cos – cos 2 = 0Subtract cos 2 from each side. cos (sin – cos )= 0Factor. cos = 0orsin – cos = 0Zero Product Property sin = cos Divide each side by cos
25
Example 4 Determine Whether a Solution Exists Divide each side by cos . tan = 1
26
Example 4 Determine Whether a Solution Exists Check ? ? ? ?
27
Example 4 Determine Whether a Solution Exists ? ? ? ? Answer:
28
Example 4 Determine Whether a Solution Exists B. Solve the equation cos = 1 – sin if 0° ≤ < 360°. cos = 1 – sin Original equation cos 2 = (1 – sin ) 2 Square each side. 1 – sin 2 = (1 – 2 sin + sin 2 )cos 2 = 1 – sin 2 0= 2 sin 2 – 2 sin Simplify. 0= sin (2 sin – 2)Factor. sin = 0or2 sin – 2 = 0Zero ProductProperty = 0 or 180 sin = 1Solve for sin = 90
29
Example 4 Determine Whether a Solution Exists Check cos =1 – sin ?? cos (0°)=1 – sin (0°) cos (180°)=1 – sin (180°) 1=1–1=1 1=1 – 0–1=1 – 0 ?? cos =1 – sin ? cos (90°)=1 – sin (90°) 0=00=0 0=1 – 1 ? Answer:0° and 90°
30
A.A B.B C.C D.D Example 4 A. Solve the equation cos = (1 – sin 2 ) if 0 ≤ < 2 . A. B. C. D.
31
A.A B.B C.C D.D Example 4 A.0°, 45°, 180°, 225° B.0°, 90°, 180°, 270° C.30°, 45°, 225°, 330° D.30°, 90°, 180°, 330° B. Solve the equation sin cos = sin 2 if 0 ≤ < 360 .
32
Example 5 Solve Trigonometric Equations by Using Identities Solve tan 4 – 4 sec 2 = –7 for all values of if is measured in degrees. tan 4 – 4 sec 2 = –7Original equation (tan 2 ) 2 – 4(1 + tan 2 )= – 7sec 2 = 1 + tan 2 (tan 2 ) 2 – 4 – 4 tan 2 = –7Distribute. (tan 2 ) 2 – 4 tan 2 + 3= 0Add 7 to each side. (tan 2 – 3)(tan 2 – 1)= 0Factor. (tan 2 – 3) = 0or(tan 2 – 1) = 0Zero Product Property
33
Example 5 Solve Trigonometric Equations by Using Identities Answer: = 60° + 180°k, = 120 + 180°k, and = 45° + 90°k, where k is any integer. tan 2 = 3ortan 2 = 1 = 60°, 120°, 180°, = 45°, 135°, 225°, tan = ortan = 1
34
A.A B.B C.C D.D Example 5 A. = 45° + 180°k, where k is any integer. B. = 90° + 180°k, where k is any integer. C. = 45° + 90°k, where k is any integer. D. = 135° + 45°k, where k is any integer. Solve sin 4 – 2sin 2 + 6 = 5 for all values of if is measured in degrees.
35
End of the Lesson
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.